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The overlap discretization
▶ keeps chiral symmetry when

moving to the lattice

▶ take Dw to be the usual
Wilson-Dirac operator

▶ then, the overlap operator is:
DN = ρI + Γ5sign

(
Q(mker

0 )
)
,

with sign(A) = A(A2)−1/2 and
Q(mker

0 ) = Γ5Dw(m
ker
0 )

▶ we further equip here the Dirac
operator with a chemical potential
i.e. Dw(µ,m

ker
0 ), and then

QH
µ = Q−µ

▶ task: solve linear systems with
DN

▶ on a 44 lattice (no
chemical potential):
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The overlap discretization
▶ keeps chiral symmetry when

moving to the lattice

▶ take Dw to be the usual
Wilson-Dirac operator

▶ then, the overlap operator is:
DN = ρI + Γ5sign

(
Q(mker

0 )
)
,

with sign(A) = A(A2)−1/2 and
Q(mker

0 ) = Γ5Dw(m
ker
0 )

▶ we further equip here the Dirac
operator with a chemical potential
i.e. Dw(µ,m

ker
0 ), and then

QH
µ = Q−µ

▶ task: solve linear systems with
DN

▶ on a 64 lattice
(µ = 0.3, βg = 5.1),
spectrum of Q2

µ(m
ker
0 ):
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Preconditioning at the solver level

▶ a first approach at boosting these
computations is preconditioning at
the level of DN , i.e. solving linear
systems with
DN · AMG(Dw(m

prec
0 ), ϵ)

▶ motivation for this: if we assume
that Dw(m

prec
0 ) is normal, then:

spec(DN(Dw(m
prec
0 ))−1) ={

ρ+csign(λ+mker
0 )

λ+mprec
0

, λ ∈ spec(Dw(0))
}
,

and there is an analytic expression
for mprec

0 which is quite close to
optimal

▶ on a 44 lattice (no
chemical potential):
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Preconditioning at the solver level

Impact of preconditioning, at the level of DN , via AMG(Dw(m
prec
0 ), ϵ)

(no chemical potential, 32×323, smeared, work by Brannick, Frommer,
Kahl, Leder, Rottmann, Strebel - 2014):
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Preconditioning at the sign-function level

But, the sign function still has to be applied and that is the most
expensive part.

In recent work (Frommer, R-H, Schweitzer, Tsolakis - 2024), we have
introduced polynomial preconditioning for the inverse square root:

A−1/2b = q(A)(A(q(A))2)−1/2b with q(A) ≈ A−1/2.

In the LQCD context, this means:

(Q2
µ)

−1/2b = q(Q2
µ)(Q

2
µ(q(Q

2
µ))

2)−1/2b with q(Q2
µ) ≈ (Q2

µ)
−1/2

(note how Arnoldi is done with Q2
µ).
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Preconditioning at the sign-function level

With a chemical potential µ = 0.3,

64×323, non-smeared, d is the degree

of the polynomial, the dashed lines

are a cheap approximation of the error.

Tolerances are 10−5 for the table and

10−9 for the figure.
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Preconditioning at the sign-function level

A short note on LR deflation for the sign function (Bloch, Frommer,
Lang, Wettig - 2007):

▶ let: ARm = RmΛm

▶ let: LH
mA = ΛmL

H
m

▶ then: f(A)b = f(A)(I −
RmL

H
m)b+ f(A)RmL

H
mb (note:

f(A)RmL
H
mb =

Rmf(Λm)L
H
mb)

▶ main problem with this
approach: eigensolving can
be extremelly expensive

▶ our numerical experiments
show that expensive
eigensolving is not a critical
issue anymore, if we
combine polynomial
preconditioning with LR
deflation

Analyzing the interplay of polynomial preconditioning with deflation, in
the context of the sign function, is ongoing work.
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“Modern” overlap solver

1: while not converged do
2: for i = 1 : mout do
3: ...
4: for j = 1 : min do
5: ...
6: v

(1)
in ← AMG(Dw(m

prec
0 , ϵ))w

(1)
in (hp)

7: ...

8: v
(2)
in ←

(
Q2

µ

(
q(Q2

µ)
)2)−1/2 (

w
(2)
in −RmLH

mw
(2)
in

)
(sp/hp)

9: ...
10: end for
11: ...

12: vout ←
(
Q2

µ

(
q(Q2

µ)
)2)−1/2 (

wout −RmLH
mwout

)
(dp)

13: ...
14: end for
15: end while
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Thank you!
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