## Autotuning multigrid parameters in the HMC on different architectures

#### Marco Garofalo, <u>Bartosz Kostrzewa</u>, Simone Romiti, Aniket Sen

Rheinische Friedrich-Wilhelms-Universität Bonn

Lattice 2024, Liverpool, United Kingdom



improvements over the last 18 months



• tmLQCD: ETMC workhorse HMC implementation for  $N_f = 2 + 1 + 1$  twisted mass Wilson (clover) simulations



- tmLQCD: ETMC workhorse HMC implementation for  $N_f = 2 + 1 + 1$  twisted mass Wilson (clover) simulations
- $\bullet$  CPU  $\rightarrow$  GPU speedup: up to 2.8 in real time as offloading fraction increases



- tmLQCD: ETMC workhorse HMC implementation for  $N_f = 2 + 1 + 1$  twisted mass Wilson (clover) simulations
- $\bullet$  CPU  $\rightarrow$  GPU speedup: up to 2.8 in real time as offloading fraction increases
- improvement in terms of energy cost much higher



- tmLQCD: ETMC workhorse HMC implementation for  $N_f = 2 + 1 + 1$  twisted mass Wilson (clover) simulations
- CPU  $\rightarrow$  GPU speedup: up to 2.8 in real time as offloading fraction increases
- improvement in terms of energy cost much higher
- GPU utilisation >70% and even up to 90% when many CPU cores are available



- tmLQCD: ETMC workhorse HMC implementation for  $N_f = 2 + 1 + 1$  twisted mass Wilson (clover) simulations
- $\bullet$  CPU  $\rightarrow$  GPU speedup: up to 2.8 in real time as offloading fraction increases
- improvement in terms of energy cost much higher
- GPU utilisation >70% and even up to 90% when many CPU cores are available
- also offloaded: gradient flow, online eigenvalue and correlator measurements

improvements over the last 18 months



- tmLQCD: ETMC workhorse HMC implementation for  $N_f = 2 + 1 + 1$  twisted mass Wilson (clover) simulations
- $\bullet$  CPU  $\rightarrow$  GPU speedup: up to 2.8 in real time as offloading fraction increases
- improvement in terms of energy cost much higher
- GPU utilisation >70% and even up to 90% when many CPU cores are available
- also offloaded: gradient flow, online eigenvalue and correlator measurements

### $112^3 \cdot 224$ at $M_\pi^{\text{phys}}$ (LUMI-G)



#### LUMI-G (MI250) strong scaling



## MG solver in the light sector



Comparison between MG-preconditioned-GCR mixed-precision CG (GPU) MG timing: two inversions + unavoidable overheads from coarse operator updates between D and D<sup>†</sup> inversions

#### Light sector of MD Hamiltonian

In practice we employ

- 2 to 3  $\rho$ -shifts (shifting the EO-operator)
- 3-4 time scales
- $\rightarrow$  per trajectory need to solve systems with:
- $\rho = 0$  about  $\mathcal{O}(100)$  times  $\rightarrow$  MG
- $\rho \approx 0.001$  about  $\mathcal{O}(100)$  times  $\rightarrow$  MG
- $\rho \approx 0.01$  about  $\mathcal{O}(200)$  times  $\rightarrow \text{CG}$
- $\rho \approx 0.1$  about  $\mathcal{O}(400)$  times  $\rightarrow \text{CG}$

MG requires two solves in derivative and an update of the coarse operator (due to twisted mass sign change), but easily wins up to  $\rho \approx am_s$ .

## Moving MG parameters from one machine to another

- Late 2022 / early 2023
  - started production of  $112^3 \cdot 224$  physical point ensemble on LUMI-G (MI250)
- First computing time estimates based on performance on Juwels Booster (A100).
- Intermediate grid:  $56 \cdot 4 \cdot 4 \cdot 8$  per GPU
- Coarsest grid:  $8 \cdot 2 \cdot 2 \cdot 4$  per GPU
- MG parameters taken from experience

## Moving MG parameters from one machine to another

- Late 2022 / early 2023
  - started production of  $112^3 \cdot 224$  physical point ensemble on LUMI-G (MI250)
- First computing time estimates based on performance on Juwels Booster (A100).
- Intermediate grid:  $56 \cdot 4 \cdot 4 \cdot 8$  per GPU
- Coarsest grid:  $8 \cdot 2 \cdot 2 \cdot 4$  per GPU
- MG parameters taken from experience

| parameter                | Ivl 0 | Ivl 1 | lvl 2 |
|--------------------------|-------|-------|-------|
| mg-mu-factor             | 1.0   | 1.0   | 50.0  |
| mg-coarse-solver-tol     | 0.1   | 0.1   | 0.1   |
| mg-coarse-solver-maxiter | 100   | 100   | 100   |
| mg-nu-post               | 4     | 4     | 4     |
| mg-nu-pre                | 2     | 2     | 2     |
| mg-smoother-tol          | 0.1   | 0.1   | 0.1   |
| mg-omega                 | 0.9   | 0.9   | 0.9   |

## Moving MG parameters from one machine to another

- Late 2022 / early 2023
  - started production of 112<sup>3</sup> · 224 physical point ensemble on LUMI-G (MI250)
- First computing time estimates based on performance on Juwels Booster (A100).
- Intermediate grid:  $56 \cdot 4 \cdot 4 \cdot 8$  per GPU
- Coarsest grid:  $8 \cdot 2 \cdot 2 \cdot 4$  per GPU
- MG parameters taken from experience

| parameter                | l∨l 0 | Ivl 1 | lvl 2 |
|--------------------------|-------|-------|-------|
| mg-mu-factor             | 1.0   | 1.0   | 50.0  |
| mg-coarse-solver-tol     | 0.1   | 0.1   | 0.1   |
| mg-coarse-solver-maxiter | 100   | 100   | 100   |
| mg-nu-post               | 4     | 4     | 4     |
| mg-nu-pre                | 2     | 2     | 2     |
|                          | -     | ~     | 2     |
| mg-smoother-tol          | 0.1   | 0.1   | 0.1   |

| Juwe | ls E | 300 | ster |
|------|------|-----|------|
|------|------|-----|------|

28 nodes:  $\sim$  6 seconds / solve

| UMI-G                              |  |
|------------------------------------|--|
| 18 nodes                           |  |
| in 2023: $\sim$ 41 seconds / solve |  |

• today:  $\sim$  14 seconds / solve

## Origin of the performance difference?

QUDA coarse-grid operator benchmark (single precision, 24 colours)





## Origin of the performance difference?

QUDA coarse-grid operator benchmark (single precision, 24 colours)



Maybe we can find a different balance between coarse, intermediate and fine iterations to obtain better performance on MI250?

#### Parameters that can be tuned w/out redoing MG setup

| parameter                | sensible choices           |
|--------------------------|----------------------------|
| mg-mu-factor             | $5 \cdot 5 \cdot 15 = 375$ |
| mg-coarse-solver-tol     | $4^2 = 16$                 |
| mg-coarse-solver-maxiter | $4^2 = 16$                 |
| mg-nu-post               | $4^3 = 64$                 |
| mg-nu-pre                | $4^3 = 64$                 |
| mg-smoother-tol          | $3^3 = 9$                  |
| mg-omega                 | $3^3 = 9$                  |
| total                    | $pprox 10^{10}  m  combs$  |

#### Parameters that can be tuned w/out redoing MG setup

| parameter                | sensible choices           |
|--------------------------|----------------------------|
| mg-mu-factor             | $5 \cdot 5 \cdot 15 = 375$ |
| mg-coarse-solver-tol     | $4^2 = 16$                 |
| mg-coarse-solver-maxiter | $4^2 = 16$                 |
| mg-nu-post               | $4^3 = 64$                 |
| mg-nu-pre                | $4^3 = 64$                 |
| mg-smoother-tol          | $3^3 = 9$                  |
| mg-omega                 | $3^3 = 9$                  |
| total                    | $pprox 10^{10}  m \ combs$ |

#### Parameters which require redoing MG setup

| parameter     | sensible choices  |
|---------------|-------------------|
| mg-block-size | $\approx 3^2 = 9$ |
| mg-nvec       | $\approx 2^2 = 4$ |
| total         | pprox 36 combs    |

#### Parameters that can be tuned w/out redoing MG setup

| parameter                | sensible choices           |
|--------------------------|----------------------------|
| mg-mu-factor             | $5 \cdot 5 \cdot 15 = 375$ |
| mg-coarse-solver-tol     | $4^2 = 16$                 |
| mg-coarse-solver-maxiter | $4^2 = 16$                 |
| mg-nu-post               | $4^3 = 64$                 |
| mg-nu-pre                | $4^3 = 64$                 |
| mg-smoother-tol          | $3^3 = 9$                  |
| mg-omega                 | $3^3 = 9$                  |
| total                    | $pprox 10^{10}  m  combs$  |

#### Parameters which require redoing MG setup

| parameter     | sensible choices  |
|---------------|-------------------|
| mg-block-size | $\approx 3^2 = 9$ |
| mg-nvec       | $\approx 2^2 = 4$ |
| total         | pprox 36 combs    |

Fully exhaustive search clearly not possible!

- fix certain params on certain levels
- do not tune less relevant params

• tune mostly / only on coarser levels Can restrict to relevant subset of  $\approx 10^6$  parameter combinations or so.

Still a major investment of computing time!

#### Parameters that can be tuned w/out redoing MG setup

| parameter                | sensible choices             |
|--------------------------|------------------------------|
| mg-mu-factor             | $5 \cdot 5 \cdot 15 = 375$   |
| mg-coarse-solver-tol     | $4^2 = 16$                   |
| mg-coarse-solver-maxiter | $4^2 = 16$                   |
| mg-nu-post               | $4^3 = 64$                   |
| mg-nu-pre                | $4^3 = 64$                   |
| mg-smoother-tol          | $3^3 = 9$                    |
| mg-omega                 | $3^3 = 9$                    |
| total                    | $pprox 10^{10} 	ext{ combs}$ |

#### Parameters which require redoing MG setup

| parameter     | sensible choices  |
|---------------|-------------------|
| mg-block-size | $\approx 3^2 = 9$ |
| mg-nvec       | $\approx 2^2 = 4$ |
| total         | pprox 36 combs    |

Fully exhaustive search clearly not possible!

- fix certain params on certain levels
- do not tune less relevant params

• tune mostly / only on coarser levels Can restrict to relevant subset of  $\approx 10^6$  parameter combinations or so.

Still a major investment of computing time!

Can we we use our intuition to find good MG setups more quickly?

https://github.com/etmc/tmLQCD/tree/deriv\_mg\_tune

#### Ideas behind proceduce:

- Always start at coarsest grid.
- Tune most relevant params first.
- Ignore small fluctuations.

- Accept even small improvements (might need several steps to see benefit).
- Tune on multiple gauge configurations.

https://github.com/etmc/tmLQCD/tree/deriv\_mg\_tune

#### Ideas behind proceduce:

- Always start at coarsest grid.
- Tune most relevant params first.
- Ignore small fluctuations.

- Accept even small improvements (might need several steps to see benefit).
- Tune on multiple gauge configurations.

| parameter                | Ivl O                   | Ivl 1              | lvl 2                  |
|--------------------------|-------------------------|--------------------|------------------------|
| mg-mu-factor             | $\mu_0$                 | $\mu_1$            | $\mu_2$                |
| mg-coarse-solver-tol     | $r_0$                   | $r_1$              | $r_2$                  |
| mg-coarse-solver-maxiter | $n_0$                   | $n_1$              | $n_2$                  |
| mg-nu-post               | $\nu_0^{\mathrm{post}}$ | $\nu_1^{\rm post}$ | $\nu_2^{post}$         |
| mg-nu-pre                | $\nu_0^{\mathrm{pre}}$  | $\nu_1^{\rm pre}$  | $\nu_2^{\mathrm{pre}}$ |
| mg-smoother-tol          | $r_0^s$                 | $r_1^s$            | $r_2^s$                |
| mg-omega                 | $\omega_0$              | $\omega_1$         | $\omega_2$             |

https://github.com/etmc/tmLQCD/tree/deriv\_mg\_tune

#### Ideas behind proceduce:

- Always start at coarsest grid.
- Tune most relevant params first.
- Ignore small fluctuations.

- Accept even small improvements (might need several steps to see benefit).
- Tune on multiple gauge configurations.

#### • How to deal with non-converging solves?

| parameter                | Ivl 0                 | Ivl 1             | Ivl 2                  |
|--------------------------|-----------------------|-------------------|------------------------|
| mg-mu-factor             | $\mu_0$               | $\mu_1$           | $\mu_2$                |
| mg-coarse-solver-tol     | $r_0$                 | $r_1$             | $r_2$                  |
| mg-coarse-solver-maxiter | $n_0$                 | $n_1$             | $n_2$                  |
| mg-nu-post               | $\nu_0^{post}$        | $\nu_1^{post}$    | $\nu_2^{post}$         |
| mg-nu-pre                | $ u_0^{\mathrm{pre}}$ | $\nu_1^{\rm pre}$ | $\nu_2^{\mathrm{pre}}$ |
| mg-smoother-tol          | $r_0^s$               | $r_1^s$           | $r_2^s$                |
| mg-omega                 | $\omega_0$            | $\omega_1$        | $\omega_2$             |

Details

| parameter                | lvl 0             | lvl 1             | lvl 2              |
|--------------------------|-------------------|-------------------|--------------------|
| mg-mu-factor             | $\mu_0 $          | $\mu_1$           | $\mu_2$            |
| mg-coarse-solver-tol     | $r_0$             | $r_1$             | $r_2$              |
| mg-coarse-solver-maxiter | $\cdot n_0 \prec$ | $n_1 <$           | $n_2$ $\checkmark$ |
| mg-nu-post               | $\nu_0^{post}$    | $\nu_1^{post}$    | $\nu_2^{post}$     |
| mg-nu-pre                | $\nu_0^{pre}$     | $\nu_1^{\rm pre}$ | $\nu_2^{pre}$      |
| mg-smoother-tol          | $r_0^s$           | $r_1^s$           | $r_2^s$            |
| mg-omega repeat          | $\omega_0$        | $\omega_1$        | $\omega_2$         |

#### Global tuning procedure parameters

- Number of tuning steps per gauge configuration, *N* (f.ex. 100).
- Tolerance  $\delta$ : stop tuning the current parameter, f.ex.  $t_i/t_{\rm best} > 0.995$
- Threshold  $\rho$ : ignore fluctuations when choosing  $t_{\rm best}$ , f.ex.  $t_i/t_{\rm best} > 0.999$

Details

| parameter         |                 | lvl 0            | lvl 1          | lvl 2         |
|-------------------|-----------------|------------------|----------------|---------------|
| mg-mu-factor      |                 | $\mu_0 \gamma$   | $\mu_1$        | $\mu_2$       |
| mg-coarse-solver- | tol             | $r_0 \checkmark$ | $r_1$          | $r_2$         |
| mg-coarse-solver- | maxiter         | $n_0$            | $n_1$          | $n_2$         |
| mg-nu-post        |                 | $\nu_0^{post}$   | $\nu_1^{post}$ | $ u_2^{post}$ |
| mg-nu-pre         |                 | $\nu_0^{pre}$    | $\nu_1^{pre}$  | $\nu_2^{pre}$ |
| mg-smoother-tol   |                 | $r_0^s$          | $r_1^s$        | $r_2^s$       |
| mg-omega          | repeat<br>M2 <= | $\omega_0$ )     | $\omega_1$     | $\omega_2$    |

#### Global tuning procedure parameters

- Number of tuning steps per gauge configuration, *N* (f.ex. 100).
- Tolerance  $\delta:$  stop tuning the current parameter, f.ex.  $t_i/t_{\rm best}>0.995$
- Threshold  $\rho:$  ignore fluctuations when choosing  $t_{\rm best},$  f.ex.  $t_i/t_{\rm best}>0.999$

#### For each parameter p on level $\ell$

- maximum number of steps to be done  $n_p^\ell$
- change in parameter per step  $\pm \Delta_p^\ell$
- 1 perform  $n_p^\ell$  steps of  $p^\ell + \Delta_p^\ell,$  or until timing stops improving
- 2 if timing does not improve (or worsens), move to next p on current  $\ell$
- 3 move to next-finest level and follow same sequence
- 4 if step i < N, go back to (1)
- 4 if step i = N, move to next gauge configuration, reset i = 0

## Tuning MG parameters for a $112^3 \cdot 224$ ensemble at $M_{\pi}^{\text{phys}}$ (from above, LUMI-G)

#### tuning from above reducing cost step-by-step

#### Initial parameters:

| parameter                | Ivl 0 | Ivl 1 | lvl 2 |
|--------------------------|-------|-------|-------|
| mg-mu-factor             | 1.0   | 1.0   | 30.0  |
| mg-coarse-solver-tol     | 0.05  | 0.05  | 0.05  |
| mg-coarse-solver-maxiter | 50    | 50    | 50    |
| mg-nu-post               | 6     | 6     | 6     |
| mg-nu-pre                | 6     | 6     | 6     |
| mg-smoother-tol          | 0.05  | 0.05  | 0.05  |
| mg-omega                 | 0.85  | 0.85  | 0.85  |

- Positive  $\Delta$  for:
- ▶ mg-mu-factor
- mg-coarse-solver-tol
- ▶ mg-smoother-tol
- Negative  $\Delta$  for:
- mg-coarse-solver-maxiter
- ▶ mg-nu-post
- ▶ mg-nu-pre

## Tuning MG parameters for a $112^3 \cdot 224$ ensemble at $M_{\pi}^{\text{phys}}$ (from above, LUMI-G)

#### tuning from above reducing cost step-by-step

#### Initial parameters:

| parameter                | Ivl 0 | Ivl 1 | lvl 2 |
|--------------------------|-------|-------|-------|
| mg-mu-factor             | 1.0   | 1.0   | 30.0  |
| mg-coarse-solver-tol     | 0.05  | 0.05  | 0.05  |
| mg-coarse-solver-maxiter | 50    | 50    | 50    |
| mg-nu-post               | 6     | 6     | 6     |
| mg-nu-pre                | 6     | 6     | 6     |
| mg-smoother-tol          | 0.05  | 0.05  | 0.05  |
| mg-omega                 | 0.85  | 0.85  | 0.85  |

- Positive  $\Delta$  for:
  - ▶ mg-mu-factor
  - mg-coarse-solver-tol
  - ▶ mg-smoother-tol
- Negative  $\Delta$  for:
- mg-coarse-solver-maxiter
- ▶ mg-nu-post
- ▶ mg-nu-pre



## Tuning MG parameters for a $112^3 \cdot 224$ ensemble at $M_{\pi}^{\text{phys}}$ (from above, LUMI-G)

#### tuning from above reducing cost step-by-step

#### Initial parameters:

| parameter                | lvl 0 | Ivl 1 | lvl 2 |
|--------------------------|-------|-------|-------|
| mg-mu-factor             | 1.0   | 1.0   | 30.0  |
| mg-coarse-solver-tol     | 0.05  | 0.05  | 0.05  |
| mg-coarse-solver-maxiter | 50    | 50    | 50    |
| mg-nu-post               | 6     | 6     | 6     |
| mg-nu-pre                | 6     | 6     | 6     |
| mg-smoother-tol          | 0.05  | 0.05  | 0.05  |
| mg-omega                 | 0.85  | 0.85  | 0.85  |

- Positive  $\Delta$  for:
  - ▶ mg-mu-factor
  - mg-coarse-solver-tol
  - ▶ mg-smoother-tol
- Negative  $\Delta$  for:
  - mg-coarse-solver-maxiter
  - ▶ mg-nu-post
  - ▶ mg-nu-pre



from 40+ seconds to  $\sim$  8 seconds in a few hundred solves

## Tuning MG parameters for a $112^3 \cdot 224$ ensemble at $M_{\pi}^{\text{phys}}$ (from below, LUMI-G)

#### tuning from below increasing cost step-by-step

#### Initial parameters:

| parameter                | Ivl 0 | Ivl 1 | lvl 2 |
|--------------------------|-------|-------|-------|
| mg-mu-factor             | 1.0   | 1.0   | 30.0  |
| mg-coarse-solver-tol     | 0.55  | 0.55  | 0.55  |
| mg-coarse-solver-maxiter | 5     | 5     | 5     |
| mg-nu-post               | 1     | 1     | 1     |
| mg-nu-pre                | 1     | 1     | 1     |
| mg-smoother-tol          | 0.55  | 0.55  | 0.55  |
| mg-omega                 | 0.85  | 0.85  | 0.85  |

- Positive  $\Delta$  for:
- ▶ mg-mu-factor
- mg-coarse-solver-maxiter
- ▶ mg-nu-post
- ▶ mg-nu-pre
- Negative  $\Delta$  for:
- mg-coarse-solver-tol
- ▶ mg-smoother-tol

## Tuning MG parameters for a $112^3 \cdot 224$ ensemble at $M_{\pi}^{\text{phys}}$ (from below, LUMI-G)

#### tuning from below increasing cost step-by-step

#### Initial parameters:

| parameter                | lvl 0 | Ivl 1 | lvl 2 |
|--------------------------|-------|-------|-------|
| mg-mu-factor             | 1.0   | 1.0   | 30.0  |
| mg-coarse-solver-tol     | 0.55  | 0.55  | 0.55  |
| mg-coarse-solver-maxiter | 5     | 5     | 5     |
| mg-nu-post               | 1     | 1     | 1     |
| mg-nu-pre                | 1     | 1     | 1     |
| mg-smoother-tol          | 0.55  | 0.55  | 0.55  |
| mg-omega                 | 0.85  | 0.85  | 0.85  |

- Positive  $\Delta$  for:
  - ▶ mg-mu-factor
  - mg-coarse-solver-maxiter
  - ▶ mg-nu-post
  - ▶ mg-nu-pre
- Negative  $\Delta$  for:
- mg-coarse-solver-tol
- ▶ mg-smoother-tol



## Tuning MG parameters for a $112^3 \cdot 224$ ensemble at $M_{\pi}^{\text{phys}}$ (from below, LUMI-G)

#### tuning from below increasing cost step-by-step

#### Initial parameters:

| parameter                | lvl 0 | Ivl 1 | lvl 2 |
|--------------------------|-------|-------|-------|
| mg-mu-factor             | 1.0   | 1.0   | 30.0  |
| mg-coarse-solver-tol     | 0.55  | 0.55  | 0.55  |
| mg-coarse-solver-maxiter | 5     | 5     | 5     |
| mg-nu-post               | 1     | 1     | 1     |
| mg-nu-pre                | 1     | 1     | 1     |
| mg-smoother-tol          | 0.55  | 0.55  | 0.55  |
| mg-omega                 | 0.85  | 0.85  | 0.85  |

- Positive  $\Delta$  for:
  - ▶ mg-mu-factor
  - mg-coarse-solver-maxiter
  - ▶ mg-nu-post
  - ▶ mg-nu-pre
- Negative  $\Delta$  for:
- mg-coarse-solver-tol
- ▶ mg-smoother-tol



# from non-convergence to $\sim$ 7 seconds in a few hundred solves

#### Tuning MG parameters for a $112^3 \cdot 224$ ensemble at $M_{\pi}^{\text{phys}}$ (Comparison) tuning from above funing from below





40

30

solve-time

config ID

7.5 to 9 seconds

#### 6.5 to 7 seconds

(depending on gauge configuration)

tuning iteration

Let's recall the  $112^3 \cdot 224$  ensemble @  $M_{\pi}^{\text{phys}}$  running on LUMI-G.

#### Juwels Booster

28 nodes

- Before tuning:  $\sim$  6 seconds / solve
- After tuning:  $\sim$  4 seconds / solve

# LUMI-G 28 nodes • Before tuning: ~ 14 seconds / solve

 $\bullet\,$  After tuning:  $\sim$  7 seconds / solve

Let's recall the  $112^3 \cdot 224$  ensemble @  $M_{\pi}^{\text{phys}}$  running on LUMI-G.

| Juwels Booster                            | LUMI-G                                           |
|-------------------------------------------|--------------------------------------------------|
| 28 nodes                                  | 28 nodes                                         |
| • Before tuning: $\sim$ 6 seconds / solve | $ullet$ Before tuning: $\sim$ 14 seconds / solve |
| • After tuning: $\sim$ 4 seconds / solve  | • After tuning: $\sim$ 7 seconds / solve         |

This was way more impressive back in 2023 when we went from 41 to  $\sim$  10 seconds.

Let's recall the  $112^3 \cdot 224$  ensemble @  $M_{\pi}^{\text{phys}}$  running on LUMI-G.

| Juwels Booster                            | LUMI-G                                     |
|-------------------------------------------|--------------------------------------------|
| 28 nodes                                  | 28 nodes                                   |
| • Before tuning: $\sim$ 6 seconds / solve | • Before tuning: $\sim$ 14 seconds / solve |
| • After tuning: $\sim$ 4 seconds / solve  | • After tuning: $\sim$ 7 seconds / solve   |

This was way more impressive back in 2023 when we went from 41 to  $\sim$  10 seconds.

Quickly finds acceptable MG setups for the HMC.

Let's recall the  $112^3 \cdot 224$  ensemble @  $M_{\pi}^{\text{phys}}$  running on LUMI-G.

| Juwels Booster                            | LUMI-G                                     |
|-------------------------------------------|--------------------------------------------|
| 28 nodes                                  | 28 nodes                                   |
| • Before tuning: $\sim$ 6 seconds / solve | • Before tuning: $\sim$ 14 seconds / solve |
| • After tuning: $\sim$ 4 seconds / solve  | • After tuning: $\sim$ 7 seconds / solve   |

This was way more impressive back in 2023 when we went from 41 to  $\sim$  10 seconds.

Quickly finds acceptable MG setups for the HMC.

Improves setups also in situations where intuition was okay.

Let's recall the  $112^3 \cdot 224$  ensemble @  $M_{\pi}^{\text{phys}}$  running on LUMI-G.

Juwels Booster

28 nodes

- Before tuning:  $\sim$  6 seconds / solve
- After tuning:  $\sim$  4 seconds / solve

| LUMI-G                                     |
|--------------------------------------------|
| 28 nodes                                   |
| • Before tuning: $\sim$ 14 seconds / solve |
| • After tuning: $\sim$ 7 seconds / solve   |

This was way more impressive back in 2023 when we went from 41 to  $\sim$  10 seconds.

Quickly finds acceptable MG setups for the HMC.

Improves setups also in situations where intuition was okay.

Finds parameters combinations that we would not have thought of.

Let's recall the  $112^3 \cdot 224$  ensemble @  $M_{\pi}^{\text{phys}}$  running on LUMI-G.

Juwels Booster

28 nodes

- Before tuning:  $\sim$  6 seconds / solve
- After tuning:  $\sim$  4 seconds / solve

| LUMI-G                                     |
|--------------------------------------------|
| 28 nodes                                   |
| • Before tuning: $\sim$ 14 seconds / solve |
| • After tuning: $\sim$ 7 seconds / solve   |

This was way more impressive back in 2023 when we went from 41 to  $\sim$  10 seconds.

Quickly finds acceptable MG setups for the HMC.

Improves setups also in situations where intuition was okay.

Finds parameters combinations that we would not have thought of.

Nice corollary: can also further improve coarse-grid-deflated solver, used to good effect on LUMI-G.

 $\Rightarrow$  Useful also for measurement campaigns.

## Limitations

- Not currently integrated into HMC.
  - Currently: need to prepare set of configurations and perform separate run.
  - ► Integration directly into HMC possible: tuner is already called from within fermionic derivative.
- Not tested on untwisted Wilson clover.
- Should work out of the box, need gauge configs in ILDG format. (ignore mg-mu-factor)
- Does not tune parameters which need MG setup to be regenerated.
  - Required logic extension simple but tedious.
- Some of the parameter evolution does not seem to make a lot of sense.
  - Might require some more fine-tuned intervention logic.
- Thresholds and starting parameters can have big impact on tuning quality.
- Need some more systematic guidelines to judge impact of lattice spacing, target quark mass and lattice volume.

## Where to get it?

If you want to play around with the code:

- https://github.com/etmc/tmLQCD/tree/deriv\_mg\_tune
- deriv\_mg\_tune executable
- all input file parameters explained in documentation
- quda\_interface.c: quda\_mg\_tune\_params function (and various helper functions)

Many thanks for your attention!

## Backup

**Backup Slides** 

## Comparison between Juwels Booster and LUMI-G

tuning from above



## Comparison between Juwels Booster and LUMI-G

tuning from below

