Numerical evidence for a CP broken deconfined phase at $\theta = \pi$ in 4D SU(2) Yang-Mills theory through simulations at imaginary θ

Mitsuaki Hirasawa (University of Milano-Bicocca, INFN)

In collabolation with Kohta Hatakeyama (Kyoto University), Masazumi Honda (RIKEN iTHEMS), Akira Matsumoto (YITP), Jun Nishimura (KEK, SOKENDAI), Atis Yosprakob(Niigata University).

The 41st Lattice Conference, 28 Jul. - 3 Aug. 2024 @ University of Liverpool

H term in SU(N) Yang-Mills theories

partition function

topological charge

- periodicity : $\theta \rightarrow \theta + 2\pi n \ (n \in \mathbb{Z})$ ullet
- CP symmetric at $\theta = 0$ and π
- phase structure at $\theta = \pi$ predicted by 't Hooft anomaly matching condition

 $Z = \mathscr{D}A_{\mu}e^{-S_{g}+i\theta Q}$

$$Q = \frac{1}{32\pi^2} \int d^4 x \epsilon_{\mu\nu\rho\sigma} \text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right]$$

 $(Q \in \mathbb{Z} \text{ on } T^4)$

[D. Gaiotto, A.Kapustin, Z. Komargodski, N.Seiberg (2017)]

Phase structure at $\theta = \pi$ in SU(2) Yang-Mills theory

- previous studies \bullet
 - SSB of CP at zero temperature (first principle calculations on lattice)
 - CP symmetric deconfined phase at high temperature (1 loop analysis)

- anomaly matching condition \bullet
 - mixed 't Hooft anomaly between CP and $Z_N^{(1)}$ symmetries
 - At least, one of them should be broken. *

relation between two phase transition :

- N = 2 : ?

[R. Kitano, R. Matsudo, N. Yamada, M. Yamazaki (2021)]

[D.J. Gross, R.D. Pisarski, L.G. Yaffe (1981)], [N. Weiss (1981)]

[D. Gaiotto, A.Kapustin, Z. Komargodski, N.Seiberg (2017)]

$$T_{\rm CP} \ge T_{\rm dec}$$

• large N : $T_{CP} = T_{dec}$

[F. Bigazzi, A. L. Cotrone, R. Sisca (2015)]

Predicted phase diagrams in SU(2) Yang-Mills theory

anomaly matching condition : $T_{\rm CP} \ge T_{\rm dec}$ at $\theta = \pi$

Holographic analysis at large N

[F. Bigazzi, A. L. Cotrone, R. Sisca (2015)]

Which phase structure appears in pure SU(2) Yang-Mills theory?

[S. Chen, K. Fukushima, H. Nishimura, Y. Tanizaki (2020)]

Spontaneous CP breaking at \theta = \pi

order parameter : topological charge density

$$\lim_{\epsilon \to 0} \lim_{V_{s} \to \infty} \frac{\langle Q \rangle_{\theta = \pi - \epsilon}}{V_{s}} = \begin{cases} 0 & \text{CP re} \\ \emptyset & \text{CP br} \end{cases}$$

 $V_{\rm s}$: spatial volume

It is difficult to measure it directly due to the sign problem.

We study the behaviour of $\langle Q \rangle$ at $\theta = \pi$ using analytic continuation.

c.f. θ dependence of $\langle Q \rangle_{\theta}$ at T = 0 in CP³ model [V. Azcoiti, G. D. Carlo, A. Galante, V. Laliena (2002)]

θ dependence of $\langle Q \rangle_{\theta}$ — analytic results for 2d U(1) case —

limits	$ heta \in \mathbb{R}$	$\theta =$
$\frac{V}{\beta} \ll 1$	$i\sin heta$	
$\frac{V}{\beta} \gg 1$	i heta	

 $(-\pi < \theta \le \pi)$

The SSB of CP at $\theta = \pi$ can be judged by $\tilde{\theta}$ dependence of $\langle Q \rangle_{\tilde{\theta}}$.

c.f.) dilute instanton gas approximation in SU(N) Yang-Mills theory $\langle Q \rangle_{\theta} \propto i \sin \theta$ (CP restored)

Phase structure at $\theta = \pi$ by analytic continuation

- ansatz for θ dependence of $\langle Q \rangle$
 - low temperature (CP broken) : $g(\theta) = b_1\theta + b_3\theta$

only odd poweres due to symmetry

high temperature (CP restored) : $h(\theta) = a_1 \sin(\theta)$

- our analysis
 - fit $\langle Q \rangle_{\tilde{\theta}}$ obtained at pure imaginary θ to two types of fitting function
 - $g(\tilde{\theta}) = b_1 \tilde{\theta} b_3 \tilde{\theta}^3 + b_5 \tilde{\theta}^5$
 - $h(\tilde{\theta}) = a_1 \sinh(\tilde{\theta}) + a_2 \sinh(2\tilde{\theta}) + a_3 \sinh(3\tilde{\theta})$
 - estimate $\langle Q \rangle_{\theta}$ at $\theta = \pi$ by analytic continuation ($\hat{\theta} = i\theta$)

$$\theta^3 + b_5 \theta^5 \qquad (-\pi < \theta \le \pi)$$

$$) + a_2 \sin(2\theta) + a_3 \sin(3\theta)$$

discontinuity at $\theta = \pi$

continuity at $\theta = \pi$

Because of
$$\frac{\partial \langle Q \rangle}{\partial \tilde{\theta}} \Big|_{\tilde{\theta}=0} = \chi_0$$

 $\cdot b_1 = \chi_0$
 $\cdot a_1 = \chi_0 - 2a_2 - 3$

Lattice setup

- Wilson plaquette action gauge action :
- definition of the topological charge :

$$S = S_{g}(U) + \tilde{\theta} Q[U_{\text{smeared}}] \qquad U_{\text{smeared}}$$

step size of the stout smearing $: \rho = 0.09$ number of steps of the stout smearing $: N_{\rho} = 40$

HMC algorithm for updates :

> Configurations are generated using the above action. ($Q[U_{\text{smeared}}]$ is used also for updates.) \rightarrow This is taken care by renormalizing theta.

clover leaf + stout smearing [P. Di Vecchia, K. Fabricius, G. C. Rossi, G. Veneziano (1981)] [C. Morningstar, M. Peardon (2004)]

: smeared link ared

θ dependence of $\langle Q \rangle_{\tilde{\theta}}$ after the $V \to \infty$ limit

 $g(\tilde{\theta}) = b_1 \tilde{\theta} - b_3 \tilde{\theta}^3 + b_5 \tilde{\theta}^5$

 $h(\tilde{\theta}) = a_1 \sinh(\tilde{\theta}) + a_2 \sinh(2\tilde{\theta}) + a_3 \sinh(3\tilde{\theta})$

θ dependence of $\langle Q \rangle_{\tilde{\theta}}$ after the $V \to \infty$ limit

 $g(\tilde{\theta}) = b_1 \tilde{\theta} - b_3 \tilde{\theta}^3 + b_5 \tilde{\theta}^5$

 $h(\tilde{\theta}) = a_1 \sinh(\tilde{\theta}) + a_2 \sinh(2\tilde{\theta}) + a_3 \sinh(3\tilde{\theta})$

It is clear that fitting by polynomial is better at lower temperature.

Analytic continuation

We can translate the obtained $\tilde{\theta}$ dependence into θ dependence of $\langle Q \rangle_{\theta}$ by analytic continuation

θ dependence of $\langle Q \rangle_{\theta}$ near CP restoration temperature

We focus on the polynomial fitting in the low temperature region. $g(\theta) = b_1\theta + b_3\theta^3 + b_5\theta^5$

In order to determine the phase diagram, we still need to obtain $T_{dec}(\theta = \pi)$.

$\boldsymbol{\theta}$ dependence of the deconfining temperature

• order parameter : <u>Polyakov loop susceptibility</u>

A peak appears near the critical temperature.

Polyakov loop susceptibility

16 14 12 , 10 축 8 б 4 2 -1.00 1.05 1.10 0.90 0.95 1.15 1.20 $T/T_{\rm c}$

($L_{\rm s} = 24, L_{\rm t} = 5, \, \tilde{\theta} = 0.3\pi$)

 θ dependence of the deconfining temperature at $V = \infty$

$\boldsymbol{\theta}$ dependence of the deconfining temperature

• order parameter : Polyakov loop susceptibility

A peak appears near the critical temperature.

($L_{\rm s} = 24, L_{\rm t} = 5, \, \tilde{\theta} = 0.3\pi$)

The results suggest $T_{\rm CP} > T_{\rm dec}(\theta = \pi)$

 θ dependence of the deconfining temperature at $V = \infty$

Summary

- We studied the phase structure at $\theta = \pi$ in 4D SU(2) Yang-Mills theory through imaginary θ simulations.
 - SSB of CP symmetry
 - $* \theta$ dependence of $\langle Q \rangle$ was estimated by analytic continuation.

•
$$\langle Q \rangle_{\theta=\pi} = 0$$
 at $0.99 < T/T_{\rm c} \lesssim 1.00$

 $0.99 < T_{\rm CP}/T_{\rm c} \lesssim 1.00$

 \bullet θ dependence of the deconfining temperature

* $T_{dec}(\theta = \pi)$ was also estimated by analytic continuation.

$$T_{\rm dec}(\theta = \pi) \lesssim 0.91 \ T_{\rm c}$$

Our results suggest $T_{\rm CP} > T_{\rm dec}(\theta = \pi)$ in SU(2) Yang-Mills theory, unlike the large N case.

Future prospects

- 4D SU(2) Yang-Mills theory
 - taking the continuum limit
 - eliminating possible artifacts of the smearing
- 4D SU(3) Yang-Mills theory (on-going)

There is a possibility that the situation is different between SU(2) and SU(3) cases since the order of the deconfinement transition is different.

> *c.f.*) deconfinement phase transition • 2nd order for N = 2• 1st order for $N \ge 3$

Thank you for listening!

\blacktriangleright Do these phase transitions occur at the same temperature as predicted at large N?

