The 41st Lattice Conference, 28 Jul. - 3 Aug. 2024 @ University of Liverpool

Numerical evidence for a CP broken deconfined phase at $\theta=\pi$ **in 4D SU(2) Yang-Mills theory through simulations at imaginary** *θ*

In collabolation with Kohta Hatakeyama (Kyoto University), Masazumi Honda (RIKEN iTHEMS), Akira Matsumoto (YITP), Jun Nishimura (KEK, SOKENDAI), Atis Yosprakob(Niigata University).

Mitsuaki Hirasawa (University of Milano-Bicocca, INFN)

θ **term in SU(N) Yang-Mills theories**

 α *Z* = α

topological charge

• periodicity: $\theta \to \theta + 2\pi n$ ($n \in \mathbb{Z}$)

- CP symmetric at $\theta = 0$ and π
- phase structure at $\theta = \pi$ predicted by 't Hooft anomaly matching condition

$$
A_{\mu}e^{-S_{g}+i\theta Q}
$$

$$
Q = \frac{1}{32\pi^2} \int d^4x \epsilon_{\mu\nu\rho\sigma} \text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right]
$$

 $(Q \in \mathbb{Z}$ on $T^4)$

[D. Gaiotto, A.Kapustin, Z. Komargodski, N.Seiberg (2017)]

Phase structure at $\theta = \pi$ **in SU(2) Yang-Mills theory**

- previous studies
	- \cdot SSB of CP at zero temperature (first principle calculations on lattice)
	- CP symmetric deconfined phase at high temperature (1 loop analysis)

- anomaly matching condition
	- \triangleright mixed 't Hooft anomaly between CP and $Z_N^{(1)}$ symmetries *N*
		- ✴ At least, one of them should be broken.

relation between two phase transition :

-
- $N = 2 : ?$

[D.J. Gross, R.D. Pisarski, L.G. Yaffe (1981)], [N. Weiss (1981)]

[R. Kitano, R. Matsudo, N. Yamada, M. Yamazaki (2021)]

[D. Gaiotto, A.Kapustin, Z. Komargodski, N.Seiberg (2017)]

$$
T_{\rm CP} \geq T_{\rm dec}
$$

• large N: $T_{\rm CP} = T_{\rm dec}$

*T*CP = *T*dec **[F. Bigazzi, A. L. Cotrone, R. Sisca (2015)]**

Predicted phase diagrams in SU(2) Yang-Mills theory

anomaly matching condition : $T_{\text{CP}} \geq T_{\text{dec}}$ at $\theta = \pi$

[F. Bigazzi, A. L. Cotrone, R. Sisca (2015)] [S. Chen, K. Fukushima, H. Nishimura, Y. Tanizaki (2020)]

Which phase structure appears in pure SU(2) Yang-Mills theory?

Spontaneous CP breaking at θ=π

• order parameter : topological charge density

$$
\lim_{\epsilon \to 0} \lim_{V_s \to \infty} \frac{\langle \mathcal{Q} \rangle_{\theta = \pi - \epsilon}}{V_s} = \begin{cases} 0 & \text{CP re} \\ \emptyset & \text{CP bi} \end{cases}
$$

 V_s : spatial volume

It is difficult to measure it directly due to the sign problem.

We study the behaviour of $\langle Q \rangle$ at $\theta = \pi$ using analytic continuation.

c.f. θ dependencce of $\langle Q \rangle_{\theta}$ at $T = 0$ in \mathbb{CP}^3 model [V. Azcoiti, G. D. Carlo, A. Galante, V. Laliena (2002)]

θ **dependence of** ⟨*Q*⟩*θ* **— analytic results for 2d U(1) case —**

(−*π* < *θ* ≤ *π*)

c.f.) dilute instanton gas approximation in SU(N) Yang-Mills theory $\langle Q \rangle_{\theta} \propto i \sin \theta$ (CP restored)

The SSB of CP at $\theta=\pi$ can be judged by θ dependence of $\langle \mathcal{Q} \rangle_{\tilde{\theta}}$. ˜ $\langle \mathcal{Q} \rangle_{\widetilde{\theta}}$

Phase structure at $\theta = \pi$ **by analytic continuation**

- ansatz for θ dependence of θ dependence of $\langle \mathcal{Q} \rangle$
	- low temperature (CP broken): $g(\theta) = b_1 \theta + b_3 \theta^3 + b_5 \theta^5$

only odd poweres due to symmetry

• high temperature (CP restored): $h(\theta) = a_1 \sin(\theta) + a_2 \sin(2\theta) + a_3 \sin(3\theta)$

- our analysis
	- ‣ fit obtained at pure imaginary to two types of fitting function ⟨*Q*⟩*θ*˜ *θ*
		- $g(\tilde{\theta}) = b_1\tilde{\theta} - b_3\tilde{\theta}^3 + b_5\tilde{\theta}^5$
		- $h(\tilde{\theta}) = a_1 \sinh(\tilde{\theta}) + a_2 \sinh(2\tilde{\theta}) + a_3 \sinh(3\tilde{\theta})$
	- \cdot estimate $\langle Q \rangle_{\theta}$ at $\theta = \pi$ by analytic continuation ($\theta = i\theta$)

$$
\theta^3 + b_5 \theta^5 \qquad (-\pi < \theta \le \pi)
$$

$$
+ a_2 \sin(2\theta) + a_3 \sin(3\theta)
$$

discontinuity at $\theta = \pi$

continuity at $\theta = \pi$

 $\widetilde{\cancel{0}}$ $=$ $i\theta$

Because of
$$
\frac{\partial \langle Q \rangle}{\partial \tilde{\theta}}\Big|_{\tilde{\theta}=0} = \chi_0
$$
,
\n
$$
\cdot b_1 = \chi_0
$$
\n
$$
\cdot a_1 = \chi_0 - 2a_2 - 3a_3
$$

Lattice setup

- gauge action: Wilson plaquette action
- definition of the topological charge: clover leaf $+$ stout smearing

[P. Di Vecchia, K. Fabricius, G. C. Rossi, G. Veneziano (1981)] [C. Morningstar, M. Peardon (2004)]

ared : smeared link

$$
S = S_{g}(U) + \tilde{\theta} Q[U_{\text{smeared}}]
$$

step size of the stout smearing : $\rho=0.09$ number of steps of the stout smearing $\div N_\rho=40$

algorithm for updates: HMC

Configurations are generated using the above action. $(Q[U_{\text{smeared}}]$ is used also for updates.)

 \rightarrow This is taken care by renormalizing theta.

θ dependence of $\langle \mathcal{Q} \rangle_{\widetilde{\theta}}$ after the $V \to \infty$ limit $\widetilde{9}$ $\langle Q \rangle_{\tilde{\theta}}$ after the $V \to \infty$

 $(T_c:$ deconfining temperature at $\theta = 0$ in the continuum limit)

 $g(\tilde{\theta}) = b_1 \tilde{\theta} - b_3 \tilde{\theta}^3 + b_5 \tilde{\theta}^5$ $h(\tilde{\theta}) = a_1 \sinh(\tilde{\theta}) + a_2 \sinh(2\tilde{\theta}) + a_3 \sinh(3\tilde{\theta})$

θ dependence of $\langle \mathcal{Q} \rangle_{\widetilde{\theta}}$ after the $V \to \infty$ limit $\widetilde{9}$ $\langle Q \rangle_{\tilde{\theta}}$ after the $V \to \infty$

 $h(\tilde{\theta}) = a_1 \sinh(\tilde{\theta}) + a_2 \sinh(2\tilde{\theta}) + a_3 \sinh(3\tilde{\theta})$

It is clear that fitting by polynomial is better at lower temperature.

Analytic continuation

We can translate the obtained *θ* ˜ θ dependence into θ dependence of $\langle \mathcal{Q} \rangle_{\theta}$ by analytic continuation

θ **dependence of** ⟨*Q*⟩ **near CP restoration temperature** *^θ*

We focus on the polynomial fitting in the low temperature region. $g(\theta) = b_1\theta + b_3\theta^3 + b_5\theta^5$

In order to determine the phase diagram, we still need to obtain $T_{\text{dec}}(\theta = \pi)$.

θ **dependence of the deconfining temperature**

• order parameter : Polyakov loop susceptibility

A peak appears near the critical temperature.

 $(L_s = 24, L_t = 5, \tilde{\theta} = 0.3\pi)$

Polyakov loop susceptibility θ dependence of the deconfining temperature at $V = \infty$

θ **dependence of the deconfining temperature**

• order parameter : Polyakov loop susceptibility

A peak appears near the critical temperature.

The results suggest $T_{\text{CP}} > T_{\text{dec}}(\theta = \pi)$

Polyakov loop susceptibility θ dependence of the deconfining temperature at $V = \infty$

Summary

- We studied the phase structure at $\theta = \pi$ in 4D SU(2) Yang-Mills theory through imaginary θ simulations. $\theta = \pi$
	- ▶ SSB of CP symmetry
		- $\;\;\ast\; \theta$ dependence of $\langle \mathcal{Q} \rangle$ was estimated by analytic continuation.

 \blacktriangleright θ dependence of the deconfining temperature *θ*

 $\text{# } T_{\text{dec}}(\theta = \pi)$ was also estimated by analytic continuation.

Our results suggest $T_{\text{CP}} > T_{\text{dec}}(\theta = \pi)$ in SU(2) Yang-Mills theory, unlike the large N case.

$$
\leftarrow \langle Q \rangle_{\theta=\pi} = 0 \text{ at } 0.99 < T/T_c \lesssim 1.00
$$

 $0.99 < T_{\text{CP}}/T_c \lesssim 1.00$

$$
T_{\rm dec}(\theta=\pi)\lesssim 0.91\ T_{\rm c}
$$

Future prospects

- 4D SU(2) Yang-Mills theory
	- \triangleright taking the continuum limit
	- ‣ eliminating possible artifacts of the smearing
- 4D SU(3) Yang-Mills theory (on-going)
	-

‣ Do these phase transitions occur at the same temperature as predicted at large *N* ?

c.f.) deconfinement phase transition • 2nd order for $N=2$ • 1st order for $N \geq 3$

-
-

Th*ank you for lis*te*ning!*

There is a possibility that the situation is different between SU(2) and SU(3) cases since the order of the deconfinement transition is different.