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Introduction — The gluino condensate

N = 1 Supersymmetric (SUSY) SU(N) Yang–Mills theory[
SU(N) gauge theory coupled to 1 massless adjoint Majorana (gluino)

]

features a non-vanishing Gluino Chiral Condensate

U(1)A −→
anomaly

Z2N −→
SSB

Z2

Value of gluino condensate has been subject of debate since first exact
instanton calculations in the Strong-/Weak-Coupling (SC/WC) regimes by

Novikov–Shifman–Vainshtein–Zakharov (NSVZ):

1

(4π)2b0N

∣∣〈Trλ2〉
∣∣ =

{
2eΛ3/N [NPB229 407 (1983) — SC]

Λ3 [NPB260 157 (1985) — WC]

Recently, SU(2) result 2Λ3 found in [Anber & Poppitz JHEP01 (2023) 118]
using fractional instantons: the authors argue 2→ N for SU(N)

=⇒ controversy about value and N-scaling still unsolved
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Lattice status
In the last 10+ years, there was a tremendous progress in lattice simulations of
SUSY Yang–Mills. See, e.g., recent reviews: [Bergner–Catterall (2016) 1603.04478;

Bergner–Münster–Piemonte (2022) 2212.10371; Schaich (2023) 2208.03580].

Despite this progress, determining the gluino condensate has proven to be a
highly non-trivial numerical challenge. So far, only few SU(2) determinations

[Giedt et al. (2008) 0810.5746; JLQCD (PoS Lattice2011) 1111.2180;

Bergner et al. (2019) 1902.08469; Piemonte et al. (2020) 2005.02236]

Massless gluino limit (chiral limit) —

No continuum limit — ×
No matching with analytic NSVZ scheme — ×

In [arXiv:2406.08995] we performed the first large-N lattice calculation of the
value and leading N-dependence of gluino condensate: chiral-continuum

limit + matching lattice with NSVZ scheme

=⇒ comparison between numerical and analytic results for the first time
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Observables
Analytic NSVZ calculations done in scheme with exact β-function

βNSVZ(λNSVZ) = − b0λ
2
NSVZ

1− b1
b0
λNSVZ

b0 = 3/(4π)2 b1 = 6/(4π)4

Λ3
NSVZ ≡

µ3

b0λNSVZ(µ)
exp

[ −8π2

λNSVZ(µ)

]
←− dynamical scale in NSVZ scheme

〈Trλ2〉 ←− RGI (renorm. group invariant) condensate

ΣRGI ≡
1

(4π)2b0N

∣∣〈Trλ2〉
∣∣ =

λNSVZ(µ)

N [1− λNSVZ(µ)/(8π2)]
Σ

(NSVZ)
R (µ)

with Σ
(s)
R (µ) = 〈ψψ〉(s)R (µ).

What’s the RGI condensate? Key to match NSVZ and lattice results
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Matching NSVZ and the lattice
Λs ← scheme-dependent RGI integr. constant of Callan–Symanzik eq. for λt

Analogously, Callan–Symanzik eq. for renorm. gluino mass m(s)
R has

RGI scheme-independent integration constant mRGI

τs(λs) =
d log

[
m

(s)
R (µ)

]

d log(µ)
τs(λs) = d0λs + . . . d0 = 2b0

mRGI = Ãm(s)
R (µ) [2b0λs(µ)]

− d0
2b0 × exp

[
−
∫ λs(µ)

0

dx

(
τs(x)

2βs(x)
− 1

x

)]

with Ã an arbitrary constant.

Since m(s)
R (µ)Σ

(s)
R (µ) is RGI =⇒ the following quantity is also RGI:

ΣRGI = AΣ
(s)
R (µ) [2b0λs(µ)]

d0
2b0 × exp

[∫ λs(µ)

0

dx

(
τs(x)

2βs(x)
− 1

x

)]

In NSVZ scheme (where τ is exactly known too) ΣRGI above coincides with the
quantity obtained in analytic calculations for A = 8π2/(9N2)
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Large-N volume independence

Our lattice calculation is based on large-N twisted volume reduction

Large-N equivalence of space-time and color degrees of freedom of YM theories
[Eguchi & Kawai PRL 48 (1982) 1063]

Large-N lattice gauge theory can be reduced on a one-point lattice with twisted
boundary conditions =⇒ Twisted Eguchi–Kawai (TEK) matrix model

[A. González-Arroyo & M. Okawa PRD27 (1983) 2397; JHEP07 (2010) 043]

Including adjoint matter within the TEK model has been successfully done
[A. González-Arroyo & M. Okawa Phys.Rev.D 88 (2013) 014514]

Large-N TEK SUSY YM can be simulated [Butti et al. JHEP07 (2022) 074 2205.03166]

using well-established techniques developed in the last 10+ years by
DESY–Jena–Münster–Regensburg collaboration

[see, e.g., Bergner et al. PRD100 074501 (2019) 1902.08469]
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Lattice setup

Dynamical massive gluino (Wilson fermion)

Sign-quenched Pfaffian (no occurrence of negative signs)

SUSY limit = continuum + massless gluino (chiral) limit
(Kaplan/Curci–Veneziano)

Chiral limit = “adjoint pion” massless limit
(SUSY + valence quenched gluino)

Numerical strategies: same methods already successfully applied
in large-N YM [CB et al. JHEP12 (2023) 034 2309.15540]

and in N = 3 QCDNf =2+1 [CB et al. JHEP11 (2023) 013 2308.01303]

Spectral method (Banks–Casher):
Σ

(s)
R

2π
= limV→∞

m→0
λ→0

ρ
(s)
R (λ,m)

Part. Quenched Chiral Pert. Theory (Gell-Mann–Oakes–Renner):

m2
π = 2

Σ
(s)
R

F 2
π

m
(s)
R
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Method I: Banks–Casher formula

Condensate from Banks–Casher via Giusti–Lüscher method [JHEP03 (2009) 013]:

Solve numerically
(
γ5D

(adj)
W [Uadj]

)
uλ = λuλ for first O(100) eigenvalues

Count modes below threshold M to obtain mode number 〈ν(M)〉

Σ = π
4V

√
1− m2

M2

[
d〈ν(M)〉

dM

]
←−slope of 〈ν(M)〉 vs M from linear fit

1.000 1.025 1.050 1.075 1.100
M/〈|λmin|〉

0

1

2

3

4

〈ν
R
〉

N = 361
b = 0.340, κ = 0.1890

Renormalization:
〈ν〉 = 〈νR〉 MR = M/ZP

=⇒ Slope fit yields Σ = ΣR/ZP

From the eigenvectors uλ we obtained
ZP/ZS to renormalize M/m

[ am = 1/(2κ)− 1/(2κcrit) = aZSmR ]
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Method II: Gell-Mann–Oakes–Renner relation

From [P. Butti, M. García Pérez, A. González-Arroyo, K.-I. Ishikawa, M. Okawa, JHEP 07 (2022) 074]

From the slopes of m2
π as a function of aZSmR = 1/(2κ)− 1/(2κcrit)

+ non-perturbative determination of ZP/ZS

=⇒ we obtain another determination of ΣR/ZP
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The SUSY Yang–Mills Λ-parameter
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√

8t0 ×10−1
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√
8t0ΛNSVZ

Improved Couplings

1/(bP )

8(1− P )

−8 log(P )

Λ-parameter from 2-loop
asymptotic scaling with 3

different improved
couplings

√
8t0Λs = lim

aχ→0

√
8t0
aχ

exp{−f(λs)}

f(x) =
1

2b0

[
1

x
+
b1
b0

log(b0x)

]

Improved couplings → lattice schemes where pert. theory converges faster

Ratio Λimpr/ΛL could be obtained [Weisz PLB100 331 (1981); García Pérez et al. 1708:00841]

ΛMS/ΛL ' 73.4667 and ΛNSVZ/ΛMS = e−1/18

√
8t0ΛNSVZ = 0.376(25)

√
8t0ΛMS = 0.397(26)
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The leading N -dependence of the gluino condensate
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ΣR/ZP renormalized via 2-loop perturbative Z(MS)
P (µ = 1/a) in terms of

improved couplings. Also RGI-conversion at 2-loop via improved couplings:

ΣRGI = A 2b0λMS(µ)
[
1 +

d
(MS)
1 −2b1

2b0
λMS(µ)

]
Σ

(MS)
R (µ) A = 8π2/(9N2)

Results for N = 169, 289, 361 fall on top of each other =⇒
our findings rule out all but the WC analytic NSVZ result
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Gluino condensate in the SUSY (chiral-continuum) limit
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√
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Weak Coupling

b = 0.340

b = 0.345

b = 0.350

Simultaneous chiral +
continuum extrapolation of
N = 361 determinations at

finite values of lattice
spacing and gluino mass
−→ SUSY limit

Final extrapolations have a
conservative 30%

systematic error due to the
perturbative

renormalization (dominant
source of uncertainty)

ΣRGI/Λ
3
NSVZ = [1.18(08)stat(12)syst]

3 = 1.64(60) (Lattice)

ΣRGI/Λ
3
NSVZ = 1 (Exact NSVZ analytic WC result)
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Back-up slides



Calculation of ZP/ZS
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Final Result

N = 289
b = 0.34, κ = 0.1850

From the same eigenproblem solved to obtain the mode number 〈ν(M)〉
we also obtained ZP/ZS non-perturbatively [Giusti & Lüscher JHEP03 (2009) 013]

(
ZP

ZS

)2

=
〈sP(M)〉
〈ν(M)〉 sP(M) ≡

∑

|λ|,|λ′|≤M

|u†λγ5uλ′ |2,
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Calculation of Fπ in the SUSY limit
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a/
√

8t0 = 0

Too obtain the condensate from the GMOR relation, we need the pion decay
constant, which can be obtained as usual from pion correlators.

Final result in the SUSY limit:
Fπ

NΛNSVZ

= 0.092(14)
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