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The problem

QCD allows for a CP-violating term Sθ in the action

S = S0 + Sθ , Sθ = i θ Q

called the θ term, where Q is the topological charge

Q =
1

32π2
ǫµνρσ

∫

d
4
xTr [FµνFρσ] ∈ Z

and θ ∈ [−π, π) is the vacuum angle

We consider Euclidean space-time.

Lattice regularization in finite volume

V is applied throughout (although

continuum notion is used sometimes)

⋆ Path integral is properly regularized

⋆ Gauge invariant

⋆ Topological charge Q is well defined

A finite value of θ is expected to result in an electric dipole moment dn ∝ θ of the neutron, which violates

CP and P. To date the most sensitive measurements of dn are compatible with zero. The current upper

bound is |dn| < 1.8 × 10−13e fm, indicating that θ is anomalously small

Why should a parameter not forbidden by symmetry be essentially zero? In the narrower sense, this puzzle

is referred to as the strong CP problem



There are two separate issues

⋆ To solve the puzzle of the vanishing electric dipole moment of the neutron, it is sufficient to show that

local operators, like the electromagnetic current, are not correlated with the topological charge – at least in

the thermodynamic limit

⋆ If this is the case, it does not mean though that θ has no effect on the general properties of QCD, like

confinement. The problem thus remains

Actually, there is strong evidence for a highly nontrivial dependence of QCD on θ, based on secured

knowledge
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Misconception of Strong CP problem
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CP violated

∝ 〈Q〉
V

≃ 1√
V

CP conserved

∝ 〈Q2〉
V

≃ const.



CP (Non)Violation

We are interested in n-point correlation functions of operators Oi at nonvanishing values of θ, which read

〈O1 · · · On〉θ = 〈ei θ Q O1 · · · On〉 =
∑

Q

e
i θ Q

P (Q) 〈O1 · · · On〉Q

where P (Q) = ZQ/Z
disconnected sectors

of charge Q

Need to know Topological Charge

Continuum on S4, for example Lattice

Gradient flow

Q =
1

32π2
ǫµνρσ

∫

d
4
xTr [FµνFρσ] Q =

t>0

1

32π2
ǫµνρσ

∫

d
4
xTr [FµνFρσ] , ∂tQ = 0

Anomaly

Q = −
∑

i

∫

d
4
xu

†
i(x)γ5ui(x)

/Dui(x) = 0

Q = −
∑

{λ=0}
(uλ, γ5uλ) , λ = 1 − e

iφ

DNuλ = λuλ Hasenfratz, Laliena & Niedermayer



Index Theorem Atiyah & Singer

Assuming there are n+ zero modes of positive chirality, γ5ui(x) = +ui(x), and n− zero modes of

negative chirality, γ5ui(x) = −ui(x), it then follows that Q = n− − n+

Vanishing Theorem

It turns out that any gauge field configuration of

positive (negative) charge Q has exactly n− (n+)

zero modes, but never zero modes of both chiralities

In mathematical language: dim ker i /D = |n+−n−|

Proofs

2D Nielsen & Schroer

4D (anti-)self dual Brown, Carlitz & Lee

4D geneneric connections Maier

Lattice Chiu

Ilgenfritz et al

Di Giacomo & Hasegawa

Gradient flow

Effective theory Leutwyler & Smilga

Assuming

P (Q) =
1

√

2π〈Q2〉
e
−Q2/2〈Q2〉

, |Q| = n

It follows

χt =
〈Q2〉
V

,
〈n〉
V

=

√

2

π

√

χt

V



Dilute Instanton Gas

The topological charge distribution PQ is obtained from a convolution of separate Poisson distributions for

instantons and anti-instantons

PQ =

∞
∑

n=0

P̃n P̃Q−n , P̃n = P̃−n =
〈Q2/2〉ne−〈Q2/2〉

n!

∑

Q

Q
2
PQ = 〈Q2〉

Thus, the toplogical charge (in form of 〈Q2〉) is still an important measure of the QCD vacuum

The fraction of zero modes to be expected

in a subvolume of one fm4 as a function of

Q = ±n for total volumes V of (5 fm)4,

(10 fm)4 and (20 fm)4:
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Of particular interest is the electric dipole moment

~dn =

∫

d3~x d3~y ei~p~x 〈N(~x, x0) ~y J0(~y, y0) N̄(0)〉θ
∫

d3x ei~p~x 〈N(~x, x0) N̄(0)〉θ
Traces are suppressed

where J0 is the time component of the electromagnetic current, and x0, y0 are chosen so that x0 ≫
y0 ≫ 0. Treating the θ term as a perturbation at first order, this reduces to

~dn = i θ

∫

d3~x d3~y ei~p~x 〈(
∑

i

∫

d4z u†
i(z)γ5ui(z))N(~x, x0) ~y J0(~y, y0) N̄(0)〉

∫

d3x ei~p~x 〈N(~x, x0) N̄(0)〉

A nonvanishing dipole moment arises from the

interaction of the nucleon with the zero modes,

which have been shown to be highly localized

Ilgenfritz et al

Thus, the interaction can be visualized by a

correlation function of two rather local operators

|ui(x)|2



Chiral Ward identity

Zero mode

↓

~dn =

〈

γ5 γµ

〉

Disconnected diagram

Quark propagator

S(x, y) =
∑

λ

uλ(x)u
†
λ(y)

iλ + m
(uλ, γ5uλ) = 0 for λ 6= 0

Guadagnoli et al.



We can assume that the strong interactions are largely confined to a lattice volume of V0 = (2.5 fm)4.

At a lattice spacing of a = 0.08 fm that corresponds to a 324 sublattice

The all-important question is: What is the probability to find a zero mode (or instanton) in the interacting

range V0 of the nucleon?

We can expect at most Rmax =
√

〈Q2〉(V0/V ) zero modes in V0. The average number is a little

smaller
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As a result, the vacuum of V0 is becoming more

and more CP-neutral, making the dipole moment

vanish proportional to 1/
√
V , i.e.

|dn| ∝
√

χt

V
θ

Corresponding estimates apply to other hadronic

observables, for example the CP-violating pion-

nucleon coupling constant ḡπNN . This leads us

to conclude that CP is conserved in the strong

interactions



Back to RG flow

t✴❛✷❂✶��

t✴❛✷❂ ✽�

t✴❛✷❂ ✻�

t✴❛✷❂ ✹�

t✴❛✷❂ ✁�

✲✸ ✲✂ ✲✄ ✵ ✄ ✂ ✸
✵

✺

✄✵

✄✺

☎

✆
❱
✭✝
✱✞
✮✟
✠

⋆ The flow to confinement is constricted to the inner

part of the envelope of the curves, that is to stay

within QCD

⋆ The color charge gets totally screened for |θ| > 0

in the infrared limit, while it becomes gradually

independent of θ as we approach the perturbative

regime

⋆ Leads to the screening length of the color charge

λc =
√

EF/ρe2 ≈ 0.5/θ [fm]

e = θ/2π Witten

↑
α

π
〈Ga

µνG
a
µν〉 RGinv

Hadrons will disintegrate only once λc has reached

a value smaller than the hadron radius



Conclusions

⋆ In the presence of the θ term one hast to distinguish between CP violation and changes of the vacuum.

While CP violations are associated with observables that are an odd function of θ, effects on the vacuum

structure are generally CP even

⋆ CP violation in hadronic processes arises from the interaction with excessive, unpaired (anti-)instantons,

whose density tends to zero in the infinite volume

⋆ The vacuum will change as soon as the characteristics of the individual topological sectors are significantly

different. This is the case for the energy density, which becomes proportional to |Q| in the infrared

⋆ The screening length of the color charge is λc ∝ 1/|θ|, so that hadrons will disintegrate only when λc

has reached a value smaller than the hadron radius, similar to the finite temperature phase transition,

where λt ∝ 1/|T − Tc|

⋆ In an external field with, or equivalent to, |θ| > 0, the color charge will be screened, leading perhaps

to the ‘oblique’ phases advocated by ’t Hooft
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