Absence of CP Violation in the Strong Interaction

Gerrit Schierholz

Deutsches Elektronen-Synchrotron DESY

arXiv:2106.11369 arXiv:2212.05485) with Y. Nakamura arXiv:2212.05485 arXiv:2307.08310 arXiv:2403.13508

The problem

QCD allows for a CP-violating term S_{θ} in the action

$$
S = S_0 + S_\theta \,, \quad S_\theta = i \,\theta \, Q
$$

called the θ term, where Q is the topological charge

$$
Q = \frac{1}{32\pi^2} \,\epsilon_{\mu\nu\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \,\in\, \mathbb{Z}
$$

and $\theta \in [-\pi, \pi)$ is the vacuum angle

We consider Euclidean space-time. Lattice regularization in finite volume V is applied throughout (although continuum notion is used sometimes)

- \star Path integral is properly regularized
- \star Gauge invariant
- \star Topological charge Q is well defined

A finite value of θ is expected to result in an electric dipole moment $d_n \propto \theta$ of the neutron, which violates CP and P. To date the most sensitive measurements of d_n are compatible with zero. The current upper bound is $|d_n| < 1.8 \times 10^{-13} e$ fm, indicating that θ is anomalously small

Why should a parameter not forbidden by symmetry be essentially zero? In the narrower sense, this puzzle is referred to as the strong CP problem

There are two separate issues

 \star To solve the puzzle of the vanishing electric dipole moment of the neutron, it is sufficient to show that local operators, like the electromagnetic current, are not correlated with the topological charge – at least in the thermodynamic limit

 \star If this is the case, it does not mean though that θ has no effect on the general properties of QCD, like confinement. The problem thus remains

Actually, there is strong evidence for a highly nontrivial dependence of QCD on θ , based on secured knowledge

Pruisken, Levine, Libby; Knizhnik, Morozov

Misconception of Strong CP problem

CP (Non)Violation

We are interested in n -point correlation functions of operators \mathcal{O}_i at nonvanishing values of θ , which read

$$
\langle \mathcal{O}_1 \cdots \mathcal{O}_n \rangle_{\theta} = \langle e^{i \theta Q} \mathcal{O}_1 \cdots \mathcal{O}_n \rangle = \sum_{Q} e^{i \theta Q} P(Q) \langle \mathcal{O}_1 \cdots \mathcal{O}_n \rangle_{Q}
$$

where $P(Q) = Z_Q/Z$ *disconnected sectors of charge Q*

Need to know Topological Charge

 $Continuum$ on S_4 , for example $Lattice$

Gradient flow

$$
Q = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \qquad Q = \epsilon_{\rho\sigma} \int d^4x \,\text{Tr} \
$$

$$
Q = \frac{1}{t \ge 0} \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \int d^4x \,\text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] , \quad \partial_t Q = 0
$$

Anomaly

 $Q = -$

 $\psi u_i(x)$

$$
\sum_{i} \int d^{4}x \, u_{i}^{\dagger}(x) \gamma_{5} u_{i}(x) \qquad Q = -\sum_{\{\lambda=0\}} (u_{\lambda}, \gamma_{5} u_{\lambda}), \quad \lambda = 1 - e^{i\phi}
$$

$$
D_{N} u_{\lambda} = \lambda u_{\lambda} \quad \text{Hasenfratz, Laliena & Niedermayer}
$$

Index Theorem **Ativah & Singer**

Assuming there are n_+ zero modes of positive chirality, $\gamma_5u_i(x) = +u_i(x)$, and n_- zero modes of negative chirality, $\gamma_5 u_i(x) = -u_i(x)$, it then follows that $Q = n - n_+$

Vanishing Theorem

It turns out that any gauge field configuration of positive (negative) charge Q has exactly $n_{-}(n_{+})$ zero modes, but never zero modes of both chiralities In mathematical language: dim ker $iD\!\!\!\!/ = |n_+ - n_-|$

Assuming

$$
P(Q) = \frac{1}{\sqrt{2\pi \langle Q^2 \rangle}} e^{-Q^2/2 \langle Q^2 \rangle}, \ |Q| = n
$$

Dilute Instanton Gas

The topological charge distribution P_Q is obtained from a convolution of separate Poisson distributions for instantons and anti-instantons

$$
P_Q = \sum_{n=0}^{\infty} \tilde{P}_n \; \tilde{P}_{Q-n} \, , \quad \tilde{P}_n = \tilde{P}_{-n} = \frac{\langle Q^2/2 \rangle^n e^{-\langle Q^2/2 \rangle}}{n!} \qquad \qquad \sum_Q Q^2 P_Q = \langle Q^2 \rangle
$$

Thus, the toplogical charge (in form of $\langle Q^2 \rangle)$ is still an important measure of the QCD vacuum

The fraction of zero modes to be expected in a subvolume of one fm 4 as a function of $Q = \pm n$ for total volumes V of $(5 \text{ fm})^4$, $(10 \text{ fm})^4$ and $(20 \text{ fm})^4$:

Of particular interest is the electric dipole moment

$$
\vec{d}_n = \frac{\int d^3 \vec{x} \, d^3 \vec{y} \, e^{i \vec{p} \vec{x}} \, \langle N(\vec{x}, x_0) \, \vec{y} \, J_0(\vec{y}, y_0) \, \bar{N}(0) \rangle_{\theta}}{\int d^3 x \, e^{i \vec{p} \vec{x}} \, \langle N(\vec{x}, x_0) \, \bar{N}(0) \rangle_{\theta}}
$$
 Traces are suppressed

where J_0 is the time component of the electromagnetic current, and x_0, y_0 are chosen so that $x_0 \gg$ $y_0 \gg 0$. Treating the θ term as a perturbation at first order, this reduces to

$$
\vec{d}_n = i \,\theta \; \frac{\int d^3\vec{x} \; d^3\vec{y} \; e^{i\vec{p}\vec{x}} \, \langle (\sum_i \int d^4z \, u_i^\dagger(z) \gamma_5 u_i(z)) \, N(\vec{x}, x_0) \, \vec{y} \, J_0(\vec{y}, y_0) \, \bar{N}(0) \rangle}{\int d^3x \; e^{i\vec{p}\vec{x}} \, \langle N(\vec{x}, x_0) \, \bar{N}(0) \rangle}
$$

A nonvanishing dipole moment arises from the interaction of the nucleon with the zero modes, which have been shown to be highly localized

Ilgenfritz et al

Thus, the interaction can be visualized by a correlation function of two rather local operators

Chiral Ward identity

Disconnected diagram

Quark propagator

$$
S(x, y) = \sum_{\lambda} \frac{u_{\lambda}(x)u_{\lambda}^{\dagger}(y)}{i\lambda + m}
$$
 (u_{\lambda}, \gamma₅u_{\lambda}) = 0 for $\lambda \neq 0$

Guadagnoli et al.

We can assume that the strong interactions are largely confined to a lattice volume of $V_0=(2.5\,{\rm fm})^4$. At a lattice spacing of $a=0.08\,\mathrm{fm}$ that corresponds to a 32^4 sublattice

The all-important question is: What is the probability to find a zero mode (or instanton) in the interacting range V_0 of the nucleon?

We can expect at most $R_{\rm max} \,=\, \sqrt{\langle Q^2\rangle}(V_0/V)$ zero modes in V_0 . The average number is a little smaller

 $\chi_t = (79\,\text{MeV})^4$

As a result, the vacuum of V_0 is becoming more and more CP-neutral, making the dipole moment vanish proportional to $1/\sqrt{2}$ √ V , i.e.

$$
|d_n| \,\,\propto\,\, \sqrt{\frac{\chi_t}{V}}\,\theta
$$

Corresponding estimates apply to other hadronic observables, for example the CP-violating pionnucleon coupling constant $\bar{g}_{\pi NN}$. This leads us to conclude that CP is conserved in the strong interactions

Back to RG flow

- \star The flow to confinement is constricted to the inner part of the envelope of the curves, that is to stay within QCD
- \star The color charge gets totally screened for $|\theta| > 0$ in the infrared limit, while it becomes gradually independent of θ as we approach the perturbative regime
- \star Leads to the screening length of the color charge $\lambda_c = \sqrt{E_F/\rho e^2} \approx 0.5/\theta \, {\rm [fm]}$

$$
e = \theta / 2\pi
$$
 Witten

Hadrons will disintegrate only once λ_c has reached a value smaller than the hadron radius

Conclusions

- \star In the presence of the θ term one hast to distinguish between CP violation and changes of the vacuum. While CP violations are associated with observables that are an odd function of θ , effects on the vacuum structure are generally CP even
- \star CP violation in hadronic processes arises from the interaction with excessive, unpaired (anti-)instantons, whose density tends to zero in the infinite volume
- \star The vacuum will change as soon as the characteristics of the individual topological sectors are significantly different. This is the case for the energy density, which becomes proportional to $|Q|$ in the infrared
- \star The screening length of the color charge is $\lambda_c \propto 1/|\theta|$, so that hadrons will disintegrate only when λ_c has reached a value smaller than the hadron radius, similar to the finite temperature phase transition, where $\lambda_t \propto 1/|T - T_c|$
- \star In an external field with, or equivalent to, $|\theta| > 0$, the color charge will be screened, leading perhaps to the 'oblique' phases advocated by 't Hooft

Literature

Reuter arXiv:hep-th/9604124

derives

$$
\theta(\mu = 0) = 0
$$
 for $\alpha_s(\mu = 0) = \infty$

based on an exact RG evolution equation à la Wetterich

derive

$$
\frac{\partial (1/g^2)}{\partial \ln \mu} = C + \bar{D} \cos \theta
$$

$$
\frac{\partial \theta}{\partial \ln \mu} = 8\pi^2 \bar{D} \sin \theta
$$

from the instanton density in an external field à la SVZ. This result is in remarkable agreement with our result for $\bar{D} \approx 1/32\pi^2$ (corresponds to $D=1/8)$

QHE (see Introduction) arXiv:cond-mat/0101003

Knizhnik and Morozov JETP Lett. 39 (1984) 240