Scale setting of SU(N) Yang–Mills theories via Twisted Gradient Flow

C. Bonanno - J.L. Dasilva Golán - M. D'Elia - M. García Pérez - A. Giorgieri

SPEAKER:

Andrea Giorgieri

andrea.giorgieri@phd.unipi.it

Motivations – Determining the Λ -parameter

Main goal: Λ -parameter of SU(N) Yang–Mills theories in the Twisted Gradient Flow (TGF) scheme

Scale setting of SU(N) Yang–Mills theories via Twisted Gradient Flow

LATTICE 2024

Motivations – Determining the Λ -parameter

Main goal: Λ -parameter of SU(N) Yang–Mills theories in the Twisted Gradient Flow (TGF) scheme

First step

http://hdl.handle.net/10486/712639 arXiv:2107.03747 arXiv:2403.13607 for N=3,5 Determination of Λ_{TGF}/μ_{had} with low-energy scale μ_{had} through *step scaling method* (never done for large-N)

LATTICE 2024

LIVERPOOL

Motivations – Determining the Λ -parameter

Main goal: Λ -parameter of SU(N) Yang-Mills theories in the Twisted Gradient Flow (TGF) scheme

First step

http://hdl.handle.net/10486/712639 arXiv:2107.03747 arXiv:2403.13607 for N=3.5 Determination of Λ_{TGF}/μ_{had} with low-energy scale μ_{had} through *step scaling method* (never done for large-N)

Second step

Preliminary results in this work for N=5

```
Determination of \mu_{had}\sqrt{8t_0} with gradient-flow scale \sqrt{t_0}
\Lambda_{TGF}\sqrt{8t_0} = \Lambda_{TGF}/\mu_{had} \cdot \mu_{had}\sqrt{8t_0}
```

LATTICE 2024

LIVERPOOL

Background – Twisted Gradient Flow scheme

SU(N) theory discretized on lattice of size $L^2 \times \tilde{L}^2$ with $\tilde{L} = L/N$ on directions 1,2

LATTICE 2024

LIVERPOOL

Background – Twisted Gradient Flow scheme

SU(N) theory discretized on lattice of size $L^2 \times \tilde{L}^2$ with $\tilde{L} = L/N$ on directions 1,2

Twisted Boundary Conditions ('t Hooft, 1980; González-Arroyo and Okawa, 1983): periodic up to a gauge transformation (the twist) for links $U_{\mu}(n)$ on plane (1,2). With appropriate choice of twist:

$$U_{\mu}(n+\tilde{L}\hat{\nu}) \equiv \Gamma_{\nu}U_{\mu}\Gamma_{\nu}^{\dagger} \quad (\mu,\nu=1,2)$$

Consistency relation:

 $\Gamma_1 \Gamma_2 = Z_{12} \Gamma_2 \Gamma_1, \quad Z_{12} = e^{i\frac{2\pi}{N}k}$

k, N coprime integers. To avoid instabilities in large-N limit, best choice of k scales with N (Chamizo and González-Arroyo, 2017):

 $N = 3 \implies k = 1$ $N = 5 \implies k = 2, \dots$

LATTICE 2024

LIVERPOOL

Objective – Setting the scale t_o

Gradient-flow scale t_0 defined for SU(3) as

 $\langle t^2 E(t) \rangle \big|_{t=t_0} = 0.3 \implies \sqrt{8t_0} \simeq 0.5 \text{ fm}$

with flowed energy density: $E(t) = \frac{1}{2} \text{Tr} \left[G_{\mu\nu}(n,t) G_{\mu\nu}(n,t) \right]$

Definition can be extended to SU(N) as

$$\frac{N}{N^2 - 1} \langle t^2 E(t) \rangle \Big|_{t=t_0} = 0.1125$$

LATTICE 2024

Scale setting of SU(N) Yang–Mills theories via Twisted Gradient Flow

3

Objective – Setting the scale t_o

 $\langle t^2 E(t) \rangle \Big|_{t=t_0} = 0.3 \implies \sqrt{8t_0} \simeq 0.5 \text{ fm}$

with flowed energy density: $E(t) = \frac{1}{2} \text{Tr} \left[G_{\mu\nu}(n,t) G_{\mu\nu}(n,t) \right]$

Gradient-flow scale t_0 defined for SU(3) as

Definition can be extended to SU(N) as

LATTICE 2024

LIVERPOOL

$$\frac{N}{N^2 - 1} \langle t^2 E(t) \rangle \Big|_{t=t_0} = 0.1125$$

Extraction of t_0 in the TGF scheme

Thermodynamic limit: at fixed bare coupling (fixed lattice spacing) infinite volume extrapolation

$$\sqrt{8t_0(a)}/a = \lim_{L \to \infty} \sqrt{8t_0(a,L)}/a$$

Continuum limit: at fixed renormalization scale μ_{had} (fixed LCP) continuum extrapolation

$$\mu_{\rm had}\sqrt{8t_0} = \lim_{a \to 0} a\mu_{\rm had} \times \sqrt{8t_0(a)}/a$$

Objective – Effect of topology

Problem	$E(t)$ of configuration correlated with its topological charge $Q\!:$ the flow drives the field to the lowest-action configuration in the Q-sector
Frobletti	Possible systematic to t_0 due to <i>topological freezing</i> : standard algorithms get stuck at fixed Q as $a \to 0$

Objective – Effect of topology

Problem	E(t) of configuration correlated with its topological charge Q : the flow drives the field to the lowest-action configuration in the Q-sector Possible systematic to t_0 due to <i>topological freezing</i> : standard algorithms get stuck at fixed Q as $a \to 0$	
Solution	Topological freezing mitigated with the <i>Parallel Tempering on Boundary Conditions</i> (PTBC) algorithm: as studied in previous work for $N=3$, PTBC allows to measure topological observables when standard algorithms fail	

LATTICE 2024

LIVERPOOL

Objective – Effect of topology

	Problem	E(t) of configuration correlated with its topological charge Q : the flow drives the field to the lowest-action configuration in the Q-sector Possible systematic to t_0 due to <i>topological freezing</i> : standard algorithms get stuck at fixed Q as $a \to 0$	
	Solution	Topological freezing mitigated with the <i>Parallel Tempering on Boundary Conditions</i> (PTBC) algorithm: as studied in previous work for $N = 3$, PTBC allows to measure topological observables when standard algorithms fail	
	Evaluation	To reproduce and evaluate the effect of freezing, projection on the $Q = 0$ sector and comparison of results: $\langle E(t) \rangle \longrightarrow \langle E(t) \delta_{Q,0} \rangle / \langle \delta_{Q,0} \rangle$ Same thermodynamic limit expected (Brower et al., 2003)	
4		Scale setting of SU(N) Yang–Mills theories via Twisted Gradient Flow	2024

LIVERPOOL

Algorithm – PTBC

Proposed for 2d CP^(N-1) (Hasenbusch, 2017), later for 4d SU(N) Yang–Mills (Bonanno et al., 2021) and full QCD (Bonanno et al., 2024)

 N_r replicas of the lattice simulated in parallel $% \mathcal{N}_r$

Replicas differ for boundary conditions on small 3d sub-lattice, the *defect* D: links crossing D multiplied by c(r) $(r = 0, 1, ..., N_r - 1)$ Periodic: c(0) = 1 Open: $c(N_r - 1) = 0$ Others: 0 < c(r) < 1

Replicas are updated independently with standard methods for some steps, then swaps among configurations are proposed via Metropolis test: decorrelation of Q transferred from open to periodic replica

Observables computed only on periodic replica: easier to keep finite-size effects under control

LATTICE 2024

IIVFRPOO

To improve performance, the defect is translated randomly and updates are more frequent around it Tuning of c(r) and size of D to have 20% uniform acceptance of swaps

Results for SU(5) – Decorrelation of topological charge

Comparison of MC histories of Q with PTBC and standard algorithm (heathbath + overrelaxation) With PTBC, lattice sweeps counted on all replicas to account for extra computational effort

Standard algorithm frozen even with coarsest lattice spacing in this work

Integrated autocorrelation time τ_{Q^2} of Q^2 for quantitative comparison:

	PTBC	Standard
Q^2	0.084(2)	0.08(2)
$ au_{Q^2}$	$2.5(3) \cdot 10^2$	$> 10^5$

Gain of PTBC gets larger in the continuum limit

LIVERPOOL

Results for SU(5) – Flow of the energy density

Flow of the energy density and determination of t_0 , with and without projection to Q = 0

 $\langle t^2 E(t) \rangle$ grows almost linearly with taround t_0 if the volume is large enough: a bending down signals large finite-size effects

With projection, larger t_0 : charged configurations have higher energy so threshold reached at later time when they are removed

LATTICE 2024

LIVERPOOL

Extrapolation to the thermodynamical limit of finite-volume determinations of $\sqrt{8t_0}$, with and without projection to Q = 0

Finite-size effects seem larger with projection

Without projection, no appreciable finite-size effects within our accuracy with volumes $1.7~{\rm fm} \lesssim l \lesssim 2.1~{\rm fm}$

LATTICE 2024

LIVERPOOL

Results for SU(5) – Continuum limit

Extrapolation to the continuum limit of $\mu_{\rm had}\sqrt{8t_0}$ without projection to Q=0

Extrapolated value:

 $\mu_{\rm had} \sqrt{8t_0} = 1.180(3)$

Previous work (Dasilva Golán et al., 2023):

 $\Lambda_{\overline{MS}}/\mu_{\rm had} = 0.56(2)$

Final (preliminary) result:

$$\Lambda_{\overline{MS}}\sqrt{8t_0} = 0.66(3)$$

Scale setting of SU(N) Yang–Mills theories via Twisted Gradient Flow

LATTICE 2024

Conclusions

Take-home messages Scale setting of the SU(5) Yang–Mills theory in the TGF scheme in order to determine the Λ –parameter in units of the gradient-flow scale

Parallel tempering on boundary conditions mitigates topological freezing, so better sampling of topological sectors and smaller finite-size effects

LATTICE 2024

Conclusions

Take-home messages Scale setting of the SU(5) Yang–Mills theory in the TGF scheme in order to determine the Λ –parameter in units of the gradient-flow scale

Parallel tempering on boundary conditions mitigates topological freezing, so better sampling of topological sectors and smaller finite-size effects

Future outlooks Refine results and compare with literature

Extend the study to SU(3) (ongoing) and SU(8) (not yet started)

Study of the volume dependence of the topological susceptibility using the PTBC algorithm

Backup – Gradient Flow

Regularization with gradient flow : gauge links $U_{\mu}(n)$ evolved in a flow-time with $\partial_t V_{\mu}(n,t) = -g_0^2 [\partial_{n,\mu} S_W(V)] V_{\mu}(n,t), \quad V_{\mu}(n,t=0) = U_{\mu}(n) \longrightarrow$ with g_0 bare coupling and S_W Wilson action (Narayanan and Neuberger, 2006; Lüscher, 2010)

Renormalized coupling defined with the flowed energy density:

$$\lambda(\mu) = \mathcal{N}\langle t^2 E(t) \rangle \big|_{\sqrt{8t} = \mu^{-1}} = \lambda_{\overline{MS}}(\mu) + O(\lambda_{\overline{MS}}^2) \longrightarrow E(t) = \frac{1}{2} \operatorname{Tr} \left[G_{\mu\nu}(n,t) G_{\mu\nu}(n,t) \right]$$

Fields smoothed in a radius $\sqrt{8t}$ (notice $[t] = [length]^2$)

 $\lambda(\mu) = \text{const.}$ defines a line of constant physics (LCP)

LATTICE 2024

LIVERPOOL

With TBCs finite-volume effects controlled by effective size l = aL, so scale defined as

 $\mu = 1/(cl)$ (c = 0.3)