The deconfinement interface tension in SU(N) gauge theories at large N

Motivation

Surface tension not well measured at large N

- Improving on existing data
- Amplitude of surface fluctuations in determining the interface tension

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Eases the tunneling situation due to absence of barriers

Existing Result

Determination through tunneling probability:

$$P \propto exp[-2\sigma A/T_c]$$

 Requires small enough volume for the tunneling to be non-negligible

σ/T_c³ = −0.104(3) + 0.0138(3)N² (Lucini, Teper, Wenger - 2005)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $\sigma/T_c^3 = -0.333(9) + 0.118(3)N$ in same publication
- Unable to verify N^2 behaviour in study

Setup

- ▶ Plaquette action: $\beta \sum_{p} \{1 \frac{1}{N} ReTr U_{p}\}$ where $\beta = \frac{2N}{g^{2}}$
- Heat bath + overrelaxation updates
- Simulations with HILA on GPUs
- Elongated system to ensure that the interface is a minimal surface

• Determination of pseudo-critical β

• Determination of pseudo-critical β

Generate configurations with the phases in coexistence

(ロ)、(型)、(E)、(E)、 E) の(()

▶ Determination of pseudo-critical β

Generate configurations with the phases in coexistence

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Restrict the system to the intermediate state

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

Restrict the system to the intermediate state

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Location of the surface

Calculating the interface tension from the surface fluctuation

$$\langle \tilde{z}_n^2
angle = rac{T}{4\pi^2 \sigma n^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Smearing is necessary as the surfaces are too rough

Eliminates the UV modes and noise

Long range structure preserved

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

Effects of the number of smearing steps

Effects of the number of smearing steps

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Effects of the number of smearing steps

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Effects of the number of smearing steps

Effects of the number of smearing steps

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Effects of the number of smearing steps

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Effects of the number of smearing steps

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

Effects of the number of smearing steps

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Effects of the number of smearing steps

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

Effects of the number of smearing steps

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

Effects of the number of smearing steps

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

Effects of the number of smearing steps

Effects of the number of smearing steps

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Effects of the number of smearing steps

Effects of the number of smearing steps

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Effects of the number of smearing steps

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Effects of the number of smearing steps

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Effects of the number of smearing steps

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Effects of the number of smearing steps

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Effects of the number of smearing steps

Effects of the number of smearing steps

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Effects of the number of smearing steps

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Effects of the number of smearing steps

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

Effects of the number of smearing steps

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

Effects of the number of smearing steps

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

Effects of the number of smearing steps

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

Effects of the number of smearing steps

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

Effects of the number of smearing steps

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Effects of the number of smearing steps

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Effects of the number of smearing steps

Effects of the number of smearing steps

Effects of the number of smearing steps

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Effects of the number of smearing steps

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Effects of the number of smearing steps

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Effects of the number of smearing steps

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Effects of the number of smearing steps

Effects of the number of smearing steps

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Effects of the number of smearing steps

Effects of the number of smearing steps

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

► SU(16)

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Smearing Correction

Kernel correction

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへ(で)

Results

Critical couplings

N_c	Nt	β_{c}
4	6	10.7919
4	8	11.0844
5	6	17.1108
5	8	17.5612
8	6	44.5620
8	8	45.6778
10	6	69.9225
10	8	71.6475
16	6	179.8509

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Results

Critical couplings

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Surface Tension

900

Volume effects

Similar behaviour with different volumes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Volume effects

Weak volume dependence

Plaquette Difference

N_c	Nt	β_{c}	$\langle u_c \rangle$	$\langle u_d \rangle$
4	6	10.7919	0.4380 (1.0303e-06)	0.4373 (1.5171e-06)
4	8	11.0844	0.4176 (6.6930e-07)	0.4175 (1.1014e-06)
5	6	17.1108	0.4469 (2.8967e-06)	0.4461 (8.1081e-07)
5	8	17.5612	0.4258 (6.6025e-07)	0.4256 (1.3036e-06)
8	6	44.5620	0.4564 (2.7630e-06)	0.4555 (2.7272e-06)
8	8	45.6778	0.4346 (1.3351e-06)	0.4344 (1.3022e-06)
10	6	69.9225	0.4586 (2.6406e-06)	0.4577 (2.6915e-06)
10	8	71.6475	0.4367 (1.7921e-06)	0.4364 (1.7316e-06)
16	6	179.8509	0.4609 (1.8135e-06)	0.4599 (1.9464e-06)

Plaquette Difference

$$\Delta u_{(N_T=6)} = 0.0009686(24) - 0.00385(11)/N^2$$
$$\Delta u_{(N_T=8)} = 0.0002413(24) - 0.00105(8)/N^2$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Advantages

- Computation in polynomial time, enables huge volume simulations
- Surface is easily located, unaffected by probability density distribution
- More suitable for cases of stronger transition
- The use of mixed phase configurations result in absence of tunneling barriers that cause slowdown

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Conclusion

- Traditional method works well with smaller systems and when the transition is not too strong
- Complementary method as larger systems are required to explore the continuum limit
- Lots of smearing required
- Presents as a consistent and reliable method for studying stronger transitions in general

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

Classical Field Dynamics of the Electroweak Phase Transition
 Moore and Turok (1996)

- Electroweak Bubble Nucleation, Nonperturbatively Moore and Rummukainen (2000)
- Properties of the deconfining phase transition in SU(N) gauge theories - Lucini, Teper, and Wenger (2005)
- SU(N) gauge theories at deconfinement Lucini, Rago, and Rinaldi (2012)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outlook

 Prototype for a strongly coupled transition of strongly coupled physics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Thin wall bubble nucleation rate computation
- Latent heat determination