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Motivation

I Surface tension not well measured at large N

I Improving on existing data

I Amplitude of surface fluctuations in determining the interface

tension

I Eases the tunneling situation due to absence of barriers



Existing Result

I Determination through tunneling probability:

P / exp[�2�A/Tc ]

I Requires small enough volume for the tunneling to be

non-negligible

I �/T 3
c = �0.104(3) + 0.0138(3)N2

(Lucini, Teper, Wenger -

2005)

I �/T 3
c = �0.333(9) + 0.118(3)N in same publication

I Unable to verify N2
behaviour in study



Setup

I Plaquette action: �
P

p{1�
1
NReTrUp} where � =

2N
g2

I Heat bath + overrelaxation updates

I Simulations with HILA on GPUs

I Elongated system to ensure that the interface is a minimal

surface
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Method

I Restrict the system to the intermediate state
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Method

I Location of the surface

hP i = 0 hP i 6= 0

z1 z2

I Calculating the interface tension from the surface fluctuation

hz̃2n i = T
4⇡2�n2



Smearing

I Smearing is necessary as the surfaces are too rough



Smearing

I Eliminates the UV modes and noise



Smearing

I Long range structure preserved
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Smearing

I E↵ects of the number of smearing steps



Smearing

I SU(16)



Smearing Correction

I Kernel correction



Results

I Critical couplings

Nc Nt �c
4 6 10.7919

4 8 11.0844

5 6 17.1108

5 8 17.5612

8 6 44.5620

8 8 45.6778

10 6 69.9225

10 8 71.6475

16 6 179.8509
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Surface Tension

I Quadratic fit: c0 + c2N2
, c0 = �0.19(2), c2 = 0.0189(11)
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Volume e↵ects

I Similar behaviour with di↵erent volumes

0 1 2 3

k
2
/T

2

0

0,1

0,2

0,3

0,4

0,5

|f k|2

60
2
 x 240

40
2
 x 160

SU(10)  N
T
 = 6



Volume e↵ects

I Weak volume dependence
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Plaquette Di↵erence

Nc Nt �c huci hudi
4 6 10.7919 0.4380 (1.0303e-06) 0.4373 (1.5171e-06)

4 8 11.0844 0.4176 (6.6930e-07) 0.4175 (1.1014e-06)

5 6 17.1108 0.4469 (2.8967e-06) 0.4461 (8.1081e-07)

5 8 17.5612 0.4258 (6.6025e-07) 0.4256 (1.3036e-06)

8 6 44.5620 0.4564 (2.7630e-06) 0.4555 (2.7272e-06)

8 8 45.6778 0.4346 (1.3351e-06) 0.4344 (1.3022e-06)

10 6 69.9225 0.4586 (2.6406e-06) 0.4577 (2.6915e-06)

10 8 71.6475 0.4367 (1.7921e-06) 0.4364 (1.7316e-06)

16 6 179.8509 0.4609 (1.8135e-06) 0.4599 (1.9464e-06)



Plaquette Di↵erence

�u(NT=6) = 0.0009686(24)� 0.00385(11)/N2

�u(NT=8) = 0.0002413(24)� 0.00105(8)/N2
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Advantages

I Computation in polynomial time, enables huge volume

simulations

I Surface is easily located, una↵ected by probability density

distribution

I More suitable for cases of stronger transition

I The use of mixed phase configurations result in absence of

tunneling barriers that cause slowdown



Conclusion

I Traditional method works well with smaller systems and when

the transition is not too strong

I Complementary method as larger systems are required to

explore the continuum limit

I Lots of smearing required

I Presents as a consistent and reliable method for studying

stronger transitions in general
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Outlook

I Prototype for a strongly coupled transition of strongly coupled

physics

I Thin wall bubble nucleation rate computation

I Latent heat determination
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