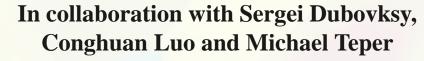
Towards an effective string theory for the flux-tube spectrum

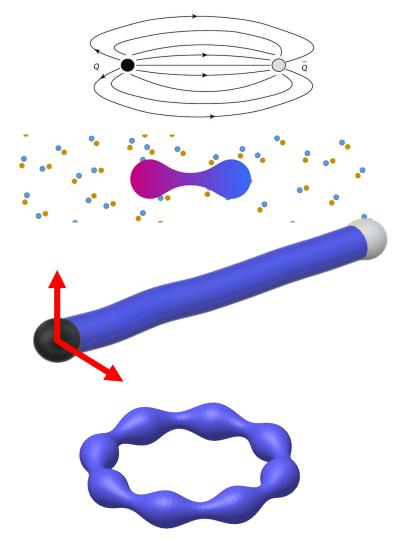
LATTICE 2024

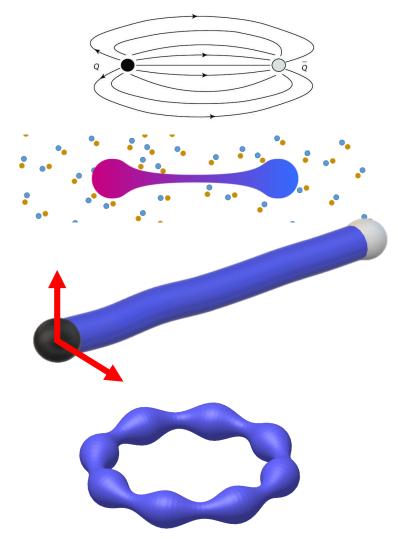
والناء

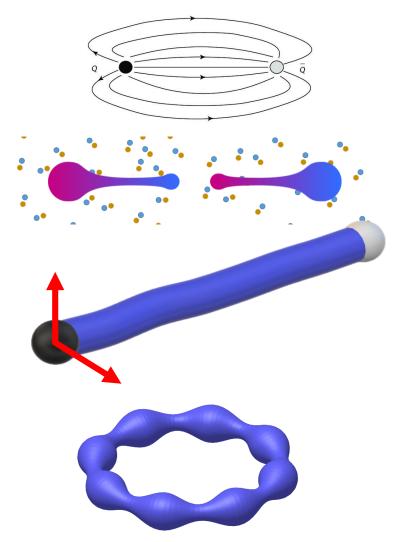

LIVERPOOL

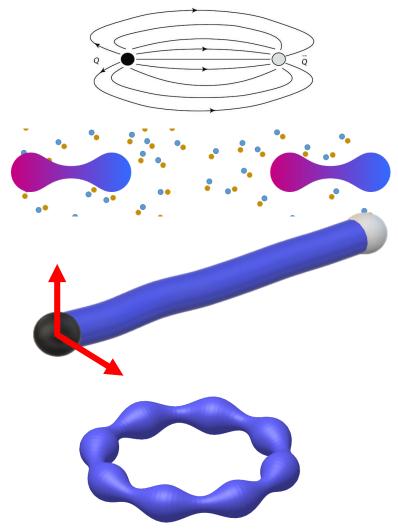
 $27^{th} - 3^{rd}$ of August 2024

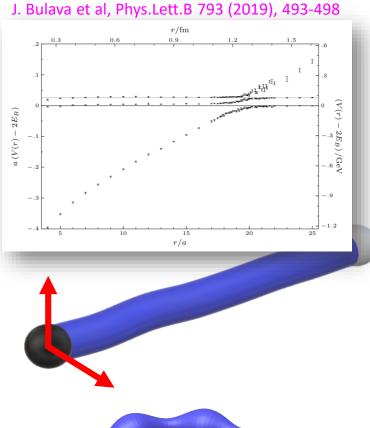
Andreas Athenodorou The Cyprus Institute © 0000-0003-4600-4245

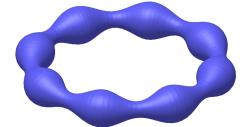




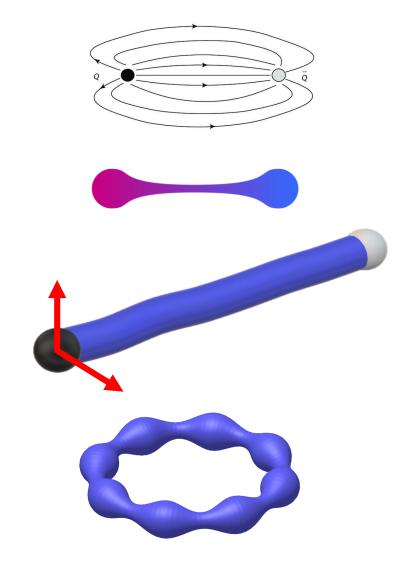

- In QCD quarks are confined in bound states called flux-tubes
- Long flux tubes behave pretty much like thin strings
 - Energy increases with separation: $V \approx \sigma r$, $\sqrt{\sigma} \approx 440$ MeV
 - At some point the string breaks String breaking –
 - We need dynamical fermions to observe string breaking
 - We work in pure gauge theory
- There are D-2 massless Goldstone modes from broken translation invariance in the D-2 directions
- There should be a Low Energy Effective String Theory model describing the energy spectrum of the flux tube
- Questions to be addressed
 - What is this effective string theory?
 - How good an approximation such an effective string theory is?
 - Are there additional massive excitations along the flux-tube?


- In QCD quarks are confined in bound states called flux-tubes
- Long flux tubes behave pretty much like thin strings
 - Energy increases with separation: $V \approx \sigma r$, $\sqrt{\sigma} \approx 440$ MeV
 - At some point the string breaks String breaking –
 - We need dynamical fermions to observe string breaking
 - We work in pure gauge theory
- There are D-2 massless Goldstone modes from broken translation invariance in the D-2 directions
- There should be a Low Energy Effective String Theory model describing the energy spectrum of the flux tube
- Questions to be addressed
 - What is this effective string theory?
 - How good an approximation such an effective string theory is?
 - Are there additional massive excitations along the flux-tube?

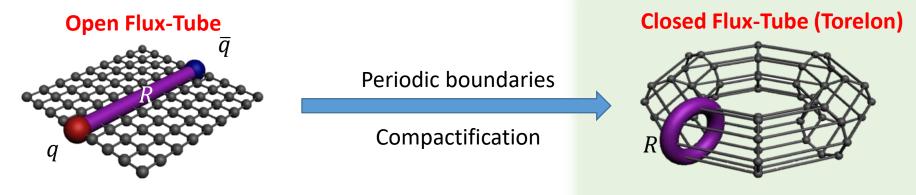

- In QCD quarks are confined in bound states called flux-tubes
- Long flux tubes behave pretty much like thin strings
 - Energy increases with separation: $V \approx \sigma r$, $\sqrt{\sigma} \approx 440$ MeV
 - At some point the string breaks String breaking –
 - We need dynamical fermions to observe string breaking
 - We work in pure gauge theory
- There are D-2 massless Goldstone modes from broken translation invariance in the D-2 directions
- There should be a Low Energy Effective String Theory model describing the energy spectrum of the flux tube
- Questions to be addressed
 - What is this effective string theory?
 - How good an approximation such an effective string theory is?
 - Are there additional massive excitations along the flux-tube?



- In QCD quarks are confined in bound states called flux-tubes
- Long flux tubes behave pretty much like thin strings
 - Energy increases with separation: $V \approx \sigma r$, $\sqrt{\sigma} \approx 440$ MeV
 - At some point the string breaks String breaking –
 - We need dynamical fermions to observe string breaking
 - We work in pure gauge theory
- There are D-2 massless Goldstone modes from broken translation invariance in the D-2 directions
- There should be a Low Energy Effective String Theory model describing the energy spectrum of the flux tube
- Questions to be addressed
 - What is this effective string theory?
 - How good an approximation such an effective string theory is?
 - Are there additional massive excitations along the flux-tube?



- In QCD quarks are confined in bound states called flux-tubes
- Long flux tubes behave pretty much like thin strings
 - Energy increases with separation: $V \approx \sigma r$, $\sqrt{\sigma} \approx 440$ MeV
 - At some point the string breaks String breaking –
 - We need dynamical fermions to observe string breaking
 - We work in pure gauge theory
- There are D-2 massless Goldstone modes from broken translation invariance in the D-2 directions
- There should be a Low Energy Effective String Theory model describing the energy spectrum of the flux tube
- Questions to be addressed
 - What is this effective string theory?
 - How good an approximation such an effective string theory is?
 - Are there additional massive excitations along the flux-tube?



- In QCD quarks are confined in bound states called flux-tubes
- Long flux tubes behave pretty much like thin strings
 - Energy increases with separation: $V \approx \sigma r$, $\sqrt{\sigma} \approx 440$ MeV
 - At some point the string breaks String breaking –
 - We need dynamical fermions to observe string breaking
 - We work in pure gauge theory
- There are D-2 massless Goldstone modes from broken translation invariance in the D-2 directions
- There should be a Low Energy Effective String Theory model describing the energy spectrum of the flux tube
- Questions to be addressed
 - What is this effective string theory?
 - How good an approximation such an effective string theory is?
 - Are there additional massive excitations along the flux-tube?

How to investigate

- Questions:
 - Is there a theoretical description in agreement with Lattice data for the flux-tube?
 - Is there a group of lattice data in striking disagreement with the theory?
 - What does this disagreement teach about the theory? Can it be extended?
- Choose a flux-tube set up:

[Caselle, Bicudo, Sharifian, Brandt, Kuti, AA]

- One needs to deal with the boundary terms
- Computationally not so expensive

[Teper, AA, Caselle]

- No boundary terms
- Computationally expensive (length=lattice extent)
- Richer spectrum due to flux-compactification
- Effective string theories cannot capture pure gauge phenomena
- We extracted the spectrum of closed flux-tubes in the Large—N limit

The effective string theory of long strings

- Universal properties of the QCD string studied extensively [Dubovsky, Gorbenko, Aharony]
- Re-parametrisation invariance and D-dimensional target space Poincaré symmetry

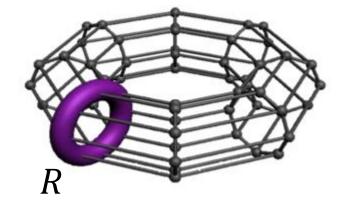
$$S = -\int d^2\sigma \sqrt{-\det h_{\alpha\beta}} \left[\ell_s^{-2} + \mathcal{R} + a_2 K^2 + b_2 K_{\alpha\beta}^{\mu} K_{\mu}^{\alpha\beta} + O(\ell_s^2) \right]$$

- First non-trivial subleading correction starts at ℓ_S^2 level
- Hence, the perturbative perspectives of the theory are universally determined by Nambu-Goto action

$$S_{\rm NG} = -\ell_s^{-2} \int d^2 \sigma \sqrt{-\det h_{\alpha\beta}}$$
, $h_{\alpha\beta} = \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu}$

The Goddard-Goldstone-Rebbi-Thorn spectrum

We quantize the Closed bosonic string (Nambu-Goto)


$$S_{\rm NG} = -\ell_s^{-2} \int d^2 \sigma \sqrt{-\det h_{\alpha\beta}}$$

 The spectrum of a closed bosonic string compactified around a torus is given by:

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2(N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right) + \left(\frac{2\pi q}{R}\right)^2}$$

- The spectrum is described by
 - 1. The winding momentum $p_{||} = 2\pi q/R$ with $q = 0, \pm 1, \pm 2, \ldots$
 - 2. The total contribution of $N_L = \sum_{k>0} n_L(k)k$ and $N_R = \sum_{k'>0} n_R(k')k'$
 - 3. Level matching Constrain: $N_L N_R = q$

The expansion in $1/R l_s^{-1}$

Topic received contributions since the early 80s

[M. Lüscher '81, J. Polchinski & A. Strominger '90, M. Lüscher & P. Weisz '04, O. Aharony et al '07 – 11, S. Dubovsky et al '12 – 19]

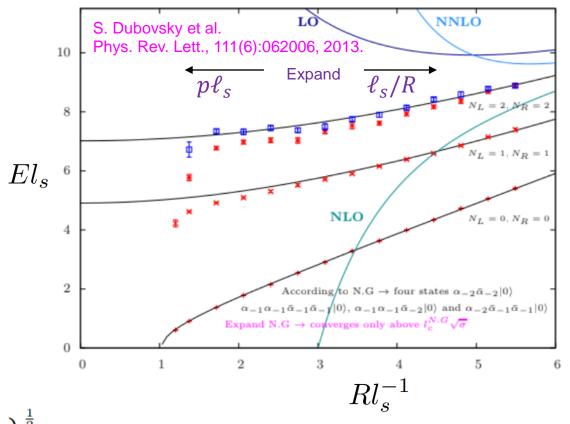
$$E_{n}(R) = l_{s}^{-1}(Rl_{s}^{-1}) + \frac{4\pi l_{s}^{-1}}{(Rl_{s}^{-1})} \left(n - \frac{D-2}{24}\right) - \frac{8\pi^{2}l_{s}^{-1}}{(Rl_{s}^{-1})^{3}} \left(n - \frac{D-2}{24}\right)^{2} + \frac{32\pi^{3}l_{s}^{-1}}{(Rl_{s}^{-1})^{5}} \left(n - \frac{D-2}{24}\right)^{3} + \left(\frac{1}{(Rl_{s}^{-1})^{7}}\right)$$

Linear Confinement

Lüscher 1980, Polchinski&Strominger 1991

Lüscher&Weisz 2004, Drummond 2004

Aharony&Karzbrun 2009


Relation to the GGRT spectrum:

$$E_n(R) = l_s^{-1}(Rl_s^{-1}) + \frac{l_s^{-1}c_1^{GGRT}}{(Rl_s^{-1})} + \frac{l_s^{-1}c_2^{GGRT}}{(Rl_s^{-1})^3} + \frac{l_s^{-1}c_3^{GGRT}}{(Rl_s^{-1})^5} + \left(\frac{1}{(Rl_s^{-1})^7}\right)$$

$$= E_{GGRT}(N_L = 0, N_R = 0, R) + \left(\frac{1}{(Rl_s^{-1})^7}\right)$$

The expansion in $1/R l_s^{-1}$ - the D=2+1 case

N_L,N_R	II	q		P_{\perp}		String State
$N_L = N_R = 0$		0		+		0>
$N_L = 1, N_R = 0$		1		-	П	$a_1 0 angle$
$N_L = N_R = 1$		0		+	П	$a_1a_{-1} 0\rangle$
$N_L=2, N_R=0$		2		+		$a_1a_1 0 angle \ a_2 0 angle$
$N_L=2,N_R=1$		1		+		$\begin{array}{c} a_2a_{-1} 0\rangle \\ a_1a_1a_{-1} 0\rangle \end{array}$
$N_L = 3, N_R = 0$		3		+ - -		$a_{2}a_{1} 0 angle \ a_{3} 0 angle \ a_{1}a_{1}a_{1} 0 angle$
$N_L = N_R = 2$		0		+ + - -		$\begin{array}{c} a_{2}a_{-2} 0\rangle \\ a_{1}a_{1}a_{-1}a_{-1} 0\rangle \\ a_{2}a_{-1}a_{-1} 0\rangle \\ a_{1}a_{1}a_{-2} 0\rangle \end{array}$

Expansion valid for
$$Rl_s^{-1} >> R_C^{\text{GGRT}} l_s^{-1} = \left\{ 8\pi \left(n - \frac{1}{12} \right) \right\}^{\frac{1}{2}}$$

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2(N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

- In D = 2 + 1 only string like states have been observed so far
- D = 3 + 1 case is more complex and interesting to look for such states

- Thermodynamic Bethe Ansatz (TBA)
- finite volume spectrum of a (1+1)-D integrable theory from $2 \rightarrow 2$ scattering
- Leading spectrum is given by integrable theory of D-2 scalars with phase shift:

$$e^{2i\delta(s)} = e^{is\ell_s^2/4}$$

- Using TBA leads to the GGRT spectrum
- Phonon scattering amplitudes can be calculated with perturbation theory
- Diagonalization of the S —matrix:

$$2\delta_{sym} = \frac{\ell_s^2 s}{4} - \frac{11\ell_s^4 s^2}{192\pi} + \frac{A - B}{256\pi^2} \ell_s^6 s^3 + O(s^4)$$

$$2\delta_{anti} = \frac{\ell_s^2 s}{4} + \frac{11\ell_s^4 s^2}{192\pi} - \frac{A + B}{256\pi^2} \ell_s^6 s^3 + O(s^4)$$

$$2\delta_{sing} = \frac{\ell_s^2 s}{4} + \frac{11\ell_s^4 s^2}{192\pi} + \frac{3A - B}{256\pi^2} \ell_s^6 s^3 + O(s^4)$$

$$0^+$$

TBA formulates with the generalized quantization condition around the circle:

$$p_{li}R + \sum_{j} 2\delta_{a_{i}a_{j}} (p_{li}, p_{rj}) - i \sum_{b} \int_{0}^{\infty} \frac{dq}{2\pi} \frac{d2\delta_{a_{i}b} (ip_{li}, q)}{dq} \ln \left(1 - e^{-R\epsilon_{r}^{b}(q)}\right) = 2\pi N_{li},$$

$$p_{ri}R + \sum_{j} 2\delta_{a_{j}a_{i}} (p_{ri}, p_{lj}) + i \sum_{b} \int_{0}^{\infty} \frac{dq}{2\pi} \frac{d2\delta_{ba_{i}} (-ip_{ri}, q)}{dq} \ln \left(1 - e^{-R\epsilon_{l}^{b}(q)}\right) = 2\pi N_{ri},$$

• The pseudo-energies $\epsilon_{l(r)}^a$ satisfy:

$$\epsilon_{l}^{a}(q) = q + \frac{i}{R} \sum_{i} 2\delta_{ab_{i}}(q, -ip_{ri}) + \frac{1}{2\pi R} \sum_{b} \int_{0}^{\infty} dq' \frac{d2\delta_{ab}(q, q')}{dq'} \ln\left(1 - e^{-R\epsilon_{r}^{b}(q')}\right)$$

$$\epsilon_{r}^{a}(q) = q - \frac{i}{R} \sum_{i} 2\delta_{b_{i}a}(q, ip_{li}) + \frac{1}{2\pi R} \sum_{b} \int_{0}^{\infty} dq' \frac{d2\delta_{ba}(q, q')}{dq'} \ln\left(1 - e^{-R\epsilon_{l}^{b}(q')}\right)$$

The energy of a state is written as

$$\Delta E = \sum_{i} p_{li} + \sum_{i} p_{ri} + \frac{1}{2\pi} \sum_{a} \int_{0}^{\infty} dq \ln \left(1 - e^{-R\epsilon_{l}^{a}(q)} \right) + \frac{1}{2\pi} \sum_{a} \int_{0}^{\infty} dq \ln \left(1 - e^{-R\epsilon_{r}^{a}(q)} \right)$$

• + Approximations

TBA formulates with the generalized quantization condition around the circle:

$$\text{ABA} \qquad \qquad \int_{0}^{\infty} \frac{dq}{2\pi} \frac{d2\delta_{a_{i}b}\left(ip_{li},q\right)}{dq} \ln\left(1 - e^{-R\epsilon_{r}^{b}(q)}\right) = 2\pi N_{li} \,, \\ p_{ri}R + \sum_{j} 2\delta_{a_{j}a_{i}}\left(p_{ri},p_{lj}\right) + i \sum_{b} \int_{0}^{\infty} \frac{dq}{2\pi} \frac{d2\delta_{ba_{i}}\left(ip_{li},q\right)}{dq} \ln\left(1 - e^{-R\epsilon_{r}^{b}(q)}\right) = 2\pi N_{ri} \,,$$

• The pseudo-energies $\epsilon_{l(r)}^a$ satisfy:

$$\epsilon_{l}^{a}(q) = q + \frac{i}{R} \sum_{i} 2\delta_{ab_{i}}(q, -ip_{ri}) + \frac{1}{2\pi R} \sum_{b} \int_{0}^{\infty} dq' \frac{d2\delta_{ab}(q, q')}{dq'} \ln\left(1 - e^{-R\epsilon_{r}^{b}(q')}\right)$$

$$\epsilon_{r}^{a}(q) = q - \frac{i}{R} \sum_{i} 2\delta_{b_{i}a}(q, ip_{li}) + \frac{1}{2\pi R} \sum_{b} \int_{0}^{\infty} dq' \frac{d2\delta_{ba}(q, q')}{dq'} \ln\left(1 - e^{-R\epsilon_{l}^{b}(q')}\right)$$

The energy of a state is written as

$$\Delta E = \sum_{i} p_{li} + \sum_{i} p_{ri} + \frac{1}{2\pi} \sum_{a} \int_{0}^{\infty} dq \ln \left(1 - e^{-R\epsilon_{l}^{a}(q)} \right) + \frac{1}{2\pi} \sum_{a} \int_{0}^{\infty} dq \ln \left(1 - e^{-R\epsilon_{r}^{a}(q)} \right)$$

+ Approximations

• $T\overline{T}$ simplifies TBA because the undressed theory is free in the leading order

$$E(R, \ell_s) = \frac{1}{\mathcal{R}_0} (R + \frac{\ell_s^2}{2} E(R, \ell_s)) E(\mathcal{R}_0, 0) + \frac{\ell_s^2}{2\mathcal{R}_0} P(R) P(\mathcal{R}_0)$$

- We neglect all the winding corrections in the undressed spectrum
- Momentum Quantization Condition becomes the Asymptotic Bethe Ansatz (ABA)
- We can investigate the spectrum of phonons massive excitations using ABA + $T\bar{T}$ deformations. [Chen, Conkey, Dubovsky, Hernández-Chifflet 2018]

Recipe

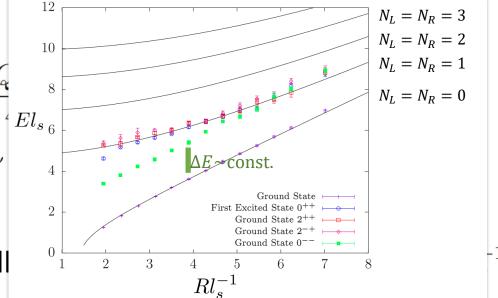
- Start with a world-sheet theory of free phonons (phonons can interact at subleading order in low energy limit) and massive particles.
- Compute the finite volume spectrum of this theory using ABA.
- Deform the theory by $T\overline{T}$ operator to the string scale, which will automatically incorporate the axion-interaction at leading order.

Theory – The Axionic String Ansatz (ASA)

- Lattice calculations demonstrate that there is one massive resonance
- We add a massive resonance [Dubovsky et al 2013]

$$S_a = \int d^2 \sigma \sqrt{-h} \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 + \frac{Q_\phi}{4} h^{\alpha\beta} \epsilon_{\mu\nu\lambda\rho} \partial_\alpha t^{\mu\nu} \partial_\beta t^{\lambda\rho} \phi \right)$$

- ϕ is a pseudoscalar the world-sheet axion $t^{\mu\nu}=\frac{\epsilon^{\alpha\beta}}{\sqrt{-h}}\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu}$
- From Monte-Carlo data of 4D SU(3) Yang-Mills: $Q_{\phi} \approx 0.38 \pm 0.04$, $m \approx 1.85^{+0.02}_{-0.03} \ell_s^{-1}$
- Integrable coupling: $Q_{\text{integrable}} = \sqrt{7/(16\pi)} \approx 0.373$
- Can we describe all states in D = 3 + 1 with the worldsheet fields only?


Theory – The Axionic String Ansatz (ASA)

- Lattice calculations demonstrate that there is one massive resonance
- We add a massive resonance [Dubovsky et al 2013]

$$S_a = \int d^2 \sigma \sqrt{-h} \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 + \frac{Q}{2} \right)$$

• ϕ is a pseudoscalar – the world-sheet axion $t^{\mu\nu}$

- Integrable coupling: $Q_{\rm integrable} = \sqrt{7/(16\pi)} \approx 0.373$
- Can we describe all states in D = 3 + 1 with the worldsheet fields only?

Theory – The Axionic String Ansatz (ASA)

- Lattice calculations demonstrate that there is one massive resonance
- We add a massive resonance [Dubovsky et al 2013]

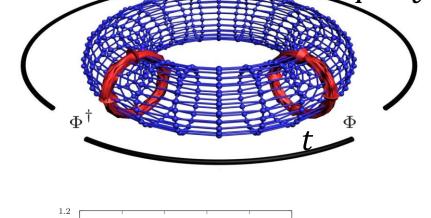
$$S_a = \int d^2 \sigma \sqrt{-h} \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 + \frac{Q_\phi}{4} h^{\alpha\beta} \epsilon_{\mu\nu\lambda\rho} \partial_\alpha t^{\mu\nu} \partial_\beta t^{\lambda\rho} \phi \right)$$

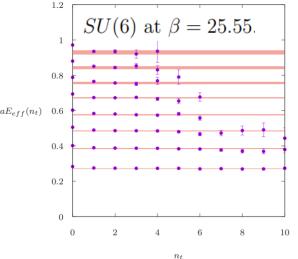
- ϕ is a pseudoscalar the world-sheet axion $t^{\mu\nu}=\frac{\epsilon^{\alpha\beta}}{\sqrt{-h}}\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu}$
- From Monte-Carlo data of 4D SU(3) Yang-Mills: $Q_{\phi} \approx 0.38 \pm 0.04$, $m \approx 1.85^{+0.02}_{-0.03} \ell_s^{-1}$
- Integrable coupling: $Q_{\text{integrable}} = \sqrt{7/(16\pi)} \approx 0.373$
- Can we describe all states in D = 3 + 1 with the worldsheet fields only?

Lattice Calculation in D=3+1 – Extracting the spectrum

The spectrum is extracted using torelon correlation functions

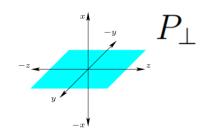
$$\langle \phi^{\dagger}(t=an_t)\phi(0)\rangle = \langle \phi^{\dagger}e^{-Han_t}\phi\rangle = \sum_{i}|c_i|^2e^{-aE_in_t}$$


$$\stackrel{t\to\infty}{=} |c_0|^2e^{-aE_0n_t}$$



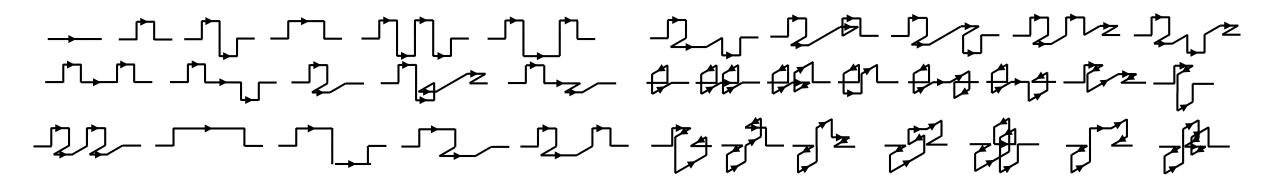
Provides the ground state

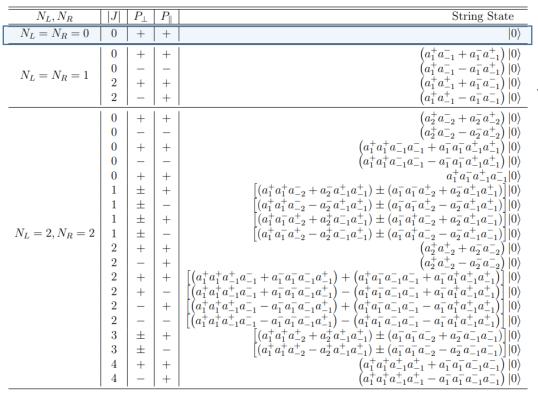
$$\lim_{t \to \infty} \left[-\ln \left(\frac{C(t)}{C(t-a)} \right) \right] = aE_0 \quad \text{Example of effective masses}$$


For excitation spectrum we use GEVP

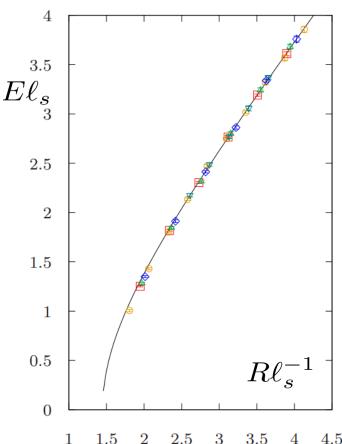


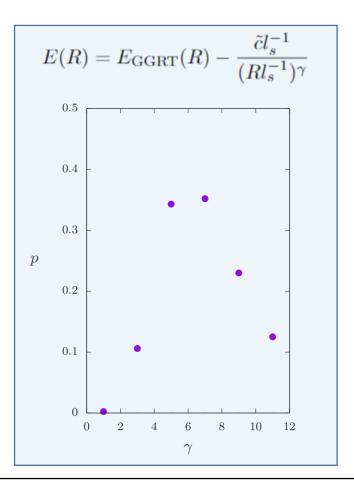
Lattice Calculation in D = 3 + 1 -The Quantum Numbers


Quantum numbers



We build operators described by the quantum numbers of J, P_{\perp} , P_{\parallel}

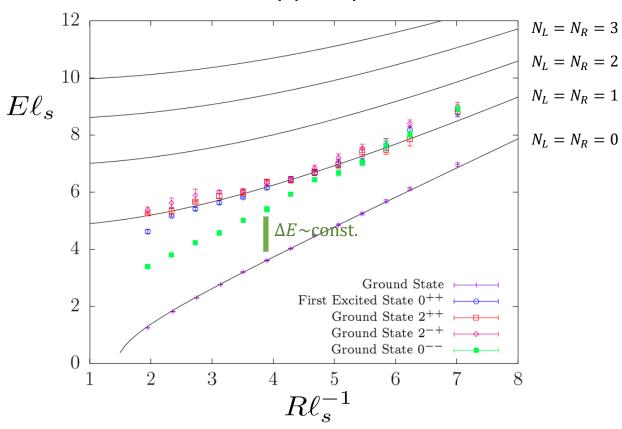

• We use a large basis of operators with transverse deformations:



Results: the absolute ground state $N_L = N_R = 0$

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2(N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

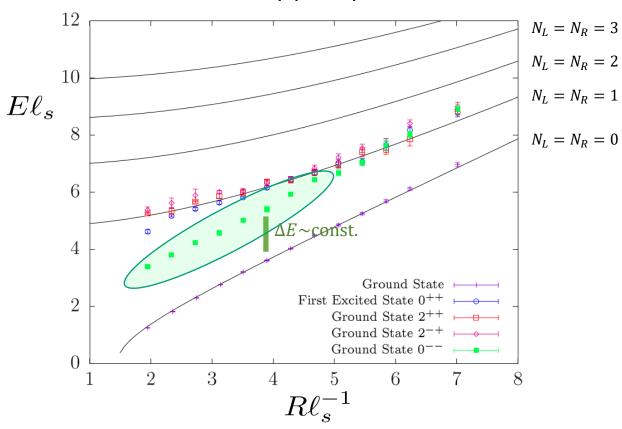
 $\langle \rangle$ $SU(6), \beta = 25.55$


 $SU(3), \beta = 6.338$

 $SU(5), \beta = 18.375$

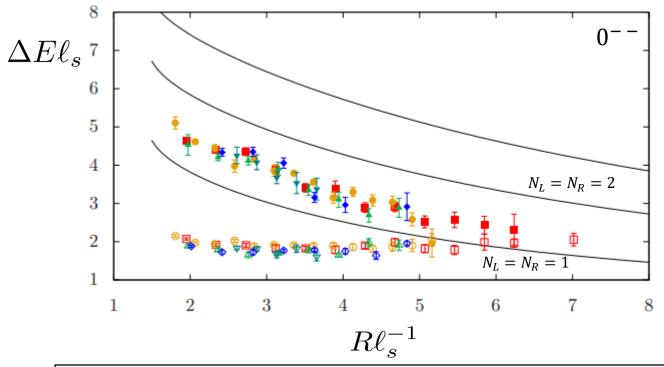
N_L,N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = N_R = 0$	0	+	+	$ 0\rangle$
	0	+	+	$(a_1^+a_{-1}^- + a_1^-a_{-1}^+) 0\rangle$
λτ λτ 1	0	_	_	$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
	2	_	+	$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
	0	+	+	$(a_2^+ a_{-2}^- + a_2^- a_{-2}^+) 0\rangle$
	0			$\begin{pmatrix} a_2 & a_{-2} + a_2 & a_{-2} \\ a_2^+ & a_{-2}^ a_2^- & a_{-2}^+ \end{pmatrix} 0\rangle$
	0	+	+	$(a_1^+a_1^+a_{-1}^-a_{-1}^-+a_1^-a_1^-a_{+1}^+a_{+1}^+) 0\rangle$
	0	_	<u>-</u>	$\begin{pmatrix} a_1^{+}a_1^{+}a_{-1}^{-1}a_{-1}^{-1} + a_1^{-}a_{-1}^{-1}a_{-1}^{-1} + a_1^{-}a_{-1}^{-1}a_{-1}^{-1} - a_1^{-}a_{-1}^{-1}a_{-1}^{-1} + a_1^{-1} \end{pmatrix} 0\rangle$
	0	+	+	$\begin{vmatrix} a_1 a_1 a_{-1} & a_1 a_{-1} & a_1 a_{-1} & a_1 \\ a_1^+ a_1^- a_{-1}^+ a_{-1}^- & a_1 & a_1 & a_{-1} \end{vmatrix} 0 $
	1	±	+	$\left[(a_1^+ a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ + a_2^- a_{-1}^+ a_{-1}^+) \right] 0\rangle$
	1	±	_	$ \begin{vmatrix} (a_1^+ a_1^+ a_{-2}^ a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ - a_2^- a_{-1}^+ a_{-1}^+) 0\rangle $
	1	±	+	$\begin{vmatrix} (a_1^+ a_1^- a_{-2}^+ + a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^-) 0 \rangle$
$N_L = 2, N_R = 2$	1	±	_	$(a_1^+a_1^-a_{-2}^+ - a_2^+a_{-1}^-a_{-1}^+) \pm (a_1^-a_1^+a_{-2}^ a_2^-a_{-1}^+a_{-1}^-) 0\rangle$
- ,	2	+	+	$\begin{pmatrix} a_{1}^{+}a_{-2}^{+} + a_{2}^{-}a_{-2}^{-} \end{pmatrix} 0 \rangle$
	2	_	+	$\left(a_{2}^{+}a_{-2}^{+}-a_{2}^{-}a_{-2}^{-2}\right)\left 0\right\rangle$
	2	+	+	$\left \left[\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^- + a_1^- a_{-1}^- a_{-1}^+ a_{-1}^+ \right) + \left(a_1^+ a_1^- a_{-1}^- a_{-1}^- + a_1^- a_1^+ a_{-1}^+ a_{-1}^+ \right) \right] 0\rangle$
	2	+	_	$\left \left[\left(a_{1}^{+} a_{1}^{+} a_{-1}^{-1} + a_{1}^{-1} a_{-1}^{-1} + a_{1}^{-1} a_{-1}^{-1} a_{-1}^{-1} \right) - \left(a_{1}^{+} a_{1}^{-} a_{-1}^{-1} a_{-1}^{-1} + a_{1}^{-1} a_{1}^{+1} a_{-1}^{+1} a_{-1}^{+1} \right) \right] 0 \rangle$
	2	_	+	$\left \left[\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^ a_1^- a_{-1}^- a_{-1}^+ a_{-1}^+ \right) + \left(a_1^+ a_1^- a_{-1}^- a_{-1}^ a_1^- a_1^+ a_{-1}^+ a_{-1}^+ \right) \right] 0 \right\rangle$
	2	_	_	$\left \left[\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^+ - a_1^- a_{1}^- a_{-1}^+ a_{-1}^+ \right) - \left(a_1^+ a_1^- a_{-1}^- a_{-1}^ a_1^- a_1^+ a_{-1}^+ a_{-1}^+ \right) \right] 0\rangle$
	3	±	+	$\left[(a_1^+ a_1^+ a_{-2}^+ + a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^- + a_2^- a_{-1}^- a_{-1}^-) \right] 0\rangle$
	3	±	-	$\left[(a_1^+ a_1^+ a_{-2}^+ - a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^ a_2^- a_{-1}^- a_{-1}^-) \right] 0\rangle$
	4	+	+	$(a_1^+a_1^+a_{-1}^+a_{-1}^++a_1^-a_{-1}^-a_{-1}^-) 0\rangle$
	4	_	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}-a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
	ı	1	1	

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2(N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$


Results for SU(3) and $\beta = 6.0625$

N_L,N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = N_R = 0$	0	+	+	$ 0\rangle$
	0	+	+	$\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = N_R = 1$	0	_	_	$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L - N_R - 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
	2	_	+	$\left(a_1^+ a_{-1}^+ - a_1^- a_{-1}^-\right) 0\rangle$
	0	+	+	$(a_2^+a_{-2}^- + a_2^-a_{-2}^+) 0\rangle$
	0	_	_	$\left(a_{2}^{+}a_{-2}^{-}-a_{2}^{-}a_{-2}^{+}\right)\left 0\right\rangle$
	0	+	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+}\right) 0\rangle$
	0	_	_	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+}\right) 0\rangle$
	0	+	+	$a_1^+ a_1^- a_{-1}^+ a_{-1}^- 0\rangle$
	1	±	+	$\left[(a_1^+ a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ + a_2^- a_{-1}^+ a_{-1}^+) \right] 0\rangle$
	1	±	-	$\left[(a_1^+ a_1^+ a_{-2}^ a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ - a_2^- a_{-1}^+ a_{-1}^+) \right] 0\rangle$
	1	±	+	$\left[(a_1^+ a_1^- a_{-2}^+ + a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^-) \right] 0\rangle$
$N_L = 2, N_R = 2$	1	±	_	$\left[(a_1^+ a_1^- a_{-2}^+ - a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^ a_2^- a_{-1}^+ a_{-1}^-) \right] 0\rangle$
	2	+	+	$\left(a_{2}^{+}a_{-2}^{+}+a_{2}^{-}a_{-2}^{-}\right)\left 0\right\rangle$
	2	-	+	$\left(a_{2}^{+}a_{-2}^{+}-a_{2}^{-}a_{-2}^{-}\right)\left 0\right\rangle$
	2	+	+	$\left \left[\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^- + a_1^- a_{-1}^- a_{-1}^- a_{-1}^- \right) + \left(a_1^+ a_1^- a_{-1}^- a_{-1}^- + a_1^- a_1^+ a_{-1}^+ a_{-1}^+ a_{-1}^+ \right) \right] 0\rangle$
	2	+	_	$\left \left[\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^- + a_1^- a_{-1}^- a_{-1}^- a_{-1}^- \right) - \left(a_1^+ a_1^- a_{-1}^- a_{-1}^- + a_1^- a_1^+ a_{-1}^+ a_{-1}^+ \right) \right] \left 0 \right\rangle$
	2	_	+	$\left \left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+} - a_{-1}^{-} - a_{1}^{-}a_{-1}^{-}a_{-1}^{+} \right) + \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-} - a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+} \right) \right] 0 \rangle$
	2	_	_	$\left \left[\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^ a_1^- a_1^- a_{-1}^- a_{-1}^+ \right) - \left(a_1^+ a_1^- a_{-1}^- a_{-1}^ a_1^- a_1^+ a_{-1}^+ a_{-1}^+ \right) \right] 0\rangle$
	3	±	+	$\left (a_1^+ a_1^+ a_{-2}^+ + a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^- + a_2^- a_{-1}^- a_{-1}^-) \right 0\rangle$
	3	±	_	$\left[(a_1^+ a_1^+ a_{-2}^+ - a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^ a_2^- a_{-1}^- a_{-1}^-) \right] 0\rangle$
	4	+	+	$\left(a_1^+a_1^+a_{-1}^+a_{-1}^++a_1^-a_1^-a_{-1}^-a_{-1}^-\right) 0\rangle$
	4	-	+	$\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^+ - a_1^- a_1^- a_{-1}^- a_{-1}^-\right) 0\rangle$

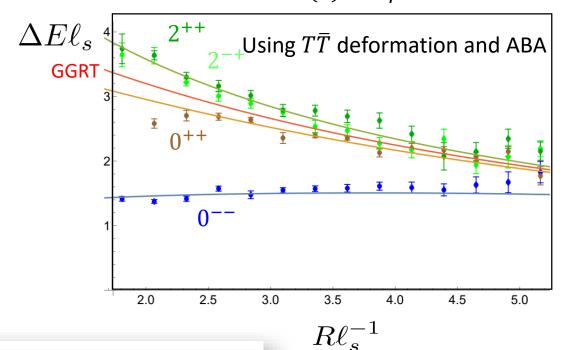
$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2(N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$


Results for SU(3) and $\beta = 6.0625$

N_L,N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = N_R = 0$	0	+	+	$ 0\rangle$
	0	+	+	$(a_1^+a_{-1}^- + a_1^-a_{-1}^+) 0\rangle$
A7 A7 1	0	_	_	$(a_1^+a_{-1}^a_1^-a_{-1}^+) 0\rangle$
$N_L \equiv N_R \equiv 1$	2	+	+	$(a_1^+a_{-1}^+ + a_1^-a_{-1}^-) 0\rangle$
	2	-	+	$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
	0	+	+	$(a_2^+a_{-2}^- + a_2^-a_{-2}^+) 0\rangle$
	0	_	_	$(a_2^+ a_{-2}^ a_2^- a_{-2}^+) 0\rangle$
	0	+	+	$(a_1^+a_1^+a_{-1}^-a_{-1}^-+a_1^-a_1^-a_{-1}^+a_{-1}^+) 0\rangle$
	0	-	-	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+}\right) 0\rangle$
	0	+	+	$a_1^+ a_1^- a_{-1}^+ a_{-1}^- 0\rangle$
	1	±	+	$\left[(a_1^+ a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ + a_2^- a_{-1}^+ a_{-1}^+) \right] 0\rangle$
	1	±	_	$\left[(a_1^+ a_1^+ a_{-2}^ a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ - a_2^- a_{-1}^+ a_{-1}^+) \right] 0\rangle$
	1	±	+	$\left[(a_1^+ a_1^- a_{-2}^+ + a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^-) \right] 0\rangle$
$N_L = 2, N_R = 2$	1	±	-	$\left[(a_1^+ a_1^- a_{-2}^+ - a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^ a_2^- a_{-1}^+ a_{-1}^-) \right] 0\rangle$
	2	+	+	$\left(a_{2}^{+}a_{-2}^{+}+a_{2}^{-}a_{-2}^{-}\right)\left 0\right\rangle$
	2	-	+	$\left(a_{2}^{+}a_{-2}^{+}-a_{2}^{-}a_{-2}^{-}\right) 0\rangle$
	2	+	+	$\left \left[\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^- + a_1^- a_1^- a_{-1}^- a_{-1}^+ \right) + \left(a_1^+ a_1^- a_{-1}^- a_{-1}^- + a_1^- a_1^+ a_{-1}^+ a_{-1}^+ \right) \right] 0\rangle$
	2	+	-	$\left \left[\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^- + a_1^- a_{-1}^- a_{-1}^- a_{-1}^+ \right) - \left(a_1^+ a_1^- a_{-1}^- a_{-1}^- + a_1^- a_1^+ a_{-1}^+ a_{-1}^+ \right) \right] 0\rangle$
	2	_	+	$\left \left[\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^ a_1^- a_1^- a_{-1}^- a_{-1}^+ \right) + \left(a_1^+ a_1^- a_{-1}^- a_{-1}^ a_1^- a_1^+ a_{-1}^+ a_{-1}^+ \right) \right] 0\rangle$
	2	_	-	$\left[\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^ a_1^- a_{-1}^- a_{-1}^- a_{-1}^+ \right) - \left(a_1^+ a_1^- a_{-1}^- a_{-1}^ a_1^- a_1^+ a_{-1}^+ a_{-1}^+ \right) \right] 0\rangle$
	3	±	+	$\left[(a_1^+ a_1^+ a_{-2}^+ + a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^- + a_2^- a_{-1}^- a_{-1}^-) \right] 0\rangle$
	3	±	-	$\left[(a_1^+ a_1^+ a_{-2}^+ - a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^ a_2^- a_{-1}^- a_{-1}^-) \right] 0\rangle$
	4	+	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}+a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
	4	_	+	$\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^+ - a_1^- a_1^- a_{-1}^- a_{-1}^-\right) 0\rangle$

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2(N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

Results for all the ensembles


$$SU(3), \beta = 6.0625$$
 $\triangle SU(5), \beta = 17.63$ $\diamondsuit SU(6), \beta = 25.55$

$$SU(3), \beta = 6.338$$
 $\nabla SU(5), \beta = 18.375$

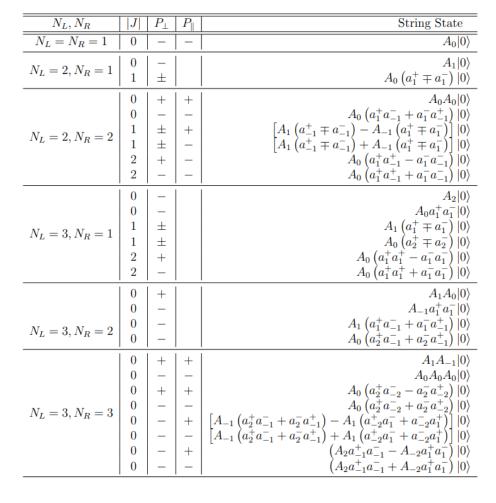
N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = N_R = 0$	0	+	+	$ 0\rangle$
	0	+	+	$\begin{pmatrix} a_1^+ a_{-1}^- + a_1^- a_{-1}^+ \end{pmatrix} 0\rangle$
$N_L = N_R = 1$	$\frac{0}{2}$	+	-	$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
	2			$\begin{pmatrix} a_1^+ a_{-1}^+ + a_1^- a_{-1}^- \end{pmatrix} 0\rangle$
			+	$\left(a_1^+ a_{-1}^+ - a_1^- a_{-1}^-\right) 0\rangle$
	0	+	+	$\left(a_{2}^{+}a_{-2}^{-}+a_{2}^{-}a_{-2}^{+}\right)\left 0\right\rangle$
	0	_	-	$\left(a_{2}^{+}a_{-2}^{-}-a_{2}^{-}a_{-2}^{+}\right)\left 0\right\rangle$
	0	+	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-} + a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+}\right) 0\rangle$
	0	_	-	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-} - a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+}\right) 0\rangle$
	0	+	+	$a_1^+ a_1^- a_{-1}^+ a_{-1}^- 0\rangle$
	1	±	+	$\left[(a_1^+ a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ + a_2^- a_{-1}^+ a_{-1}^+) \right] 0\rangle$
	1	±	-	$\left[(a_1^+ a_1^+ a_{-2}^ a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ - a_2^- a_{-1}^+ a_{-1}^+) \right] 0\rangle$
	1	±	+	$\left[(a_1^+ a_1^- a_{-2}^+ + a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^-) \right] 0\rangle$
$N_L = 2, N_R = 2$	1	±	-	$\left[(a_1^+ a_1^- a_{-2}^+ - a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^ a_2^- a_{-1}^+ a_{-1}^-) \right] 0\rangle$
	2	+	+	$\left(a_{2}^{+}a_{-2}^{+}+a_{2}^{-}a_{-2}^{-}\right)\left 0\right\rangle$
	2	_	+	$\begin{pmatrix} a_{2}^{+}a_{-2}^{+} - a_{2}^{-}a_{-2}^{-} & 0\rangle \\ 0\rangle - a_{-2}^{+}a_{-2}$
	2	+	+	$\left \left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+} + a_{-1}^{-}a_{-1}^{-} + a_{1}^{-}a_{-1}^{-}a_{-1}^{+} \right) + \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-} + a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+} \right) \right] 0 \rangle$
	2	+	_	$\left \left[\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^- + a_1^- a_{-1}^- a_{-1}^- a_{-1}^+ \right) - \left(a_1^+ a_1^- a_{-1}^- a_{-1}^- + a_1^- a_{-1}^+ a_{-1}^+ a_{-1}^+ a_{-1}^+ \right) \right] 0\rangle$
	2	-	+	$\left \begin{bmatrix} \left(a_1^+ a_1^+ a_{-1}^+ - a_1^- a_{-1}^- a_{-1}^- a_{-1}^+ \right) + \left(a_1^+ a_1^- a_{-1}^- a_{-1}^ a_1^- a_1^+ a_{-1}^+ a_{-1}^+ \right) \right] 0\rangle$
	2	_	-	$\left \left[\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^ a_1^- a_1^- a_{-1}^- a_{-1}^+ \right) - \left(a_1^+ a_1^- a_{-1}^- a_{-1}^ a_1^- a_1^+ a_{-1}^+ a_{-1}^+ \right) \right] 0\rangle$
	3	± +	+	$ \left \left(a_1^+ a_1^+ a_{-2}^+ + a_2^+ a_{-1}^+ a_{-1}^+ \right) \pm \left(a_1^- a_1^- a_{-2}^- + a_2^- a_{-1}^- a_{-1}^- \right) \right \left 0 \right\rangle $
		_	-	$\left[(a_1^+ a_1^+ a_{-2}^+ - a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^ a_2^- a_{-1}^- a_{-1}^-) \right] 0\rangle$
	4	+	+	$\left(a_1^+a_1^+a_{-1}^+a_{-1}^++a_1^-a_1^-a_{-1}^-a_{-1}^-\right) 0\rangle$
	4	_	+	$\left(a_1^+ a_1^+ a_{-1}^+ a_{-1}^+ - a_1^- a_1^- a_{-1}^- a_{-1}^-\right) 0\rangle$

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2(N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

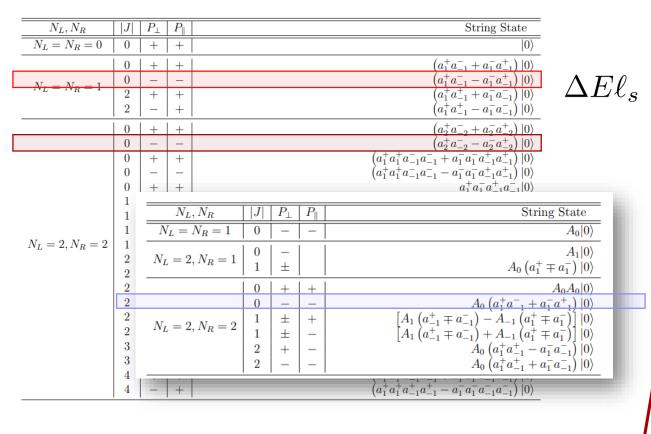
Results for SU(3) and $\beta = 6.338$

	SU(3)	SU(5)	SU(6)
2++			
$m\ell_s$	1.812(16)	1.647(23)	1.653(17)
Q_{ϕ}	0.377(7)	0.387(10)	0.385(10)
2+-			
$m\ell_s$	1.811(16)	1.648(23)	1.656(17)
Q_{ϕ}	0.354(6)	0.346(7)	0.337(10)

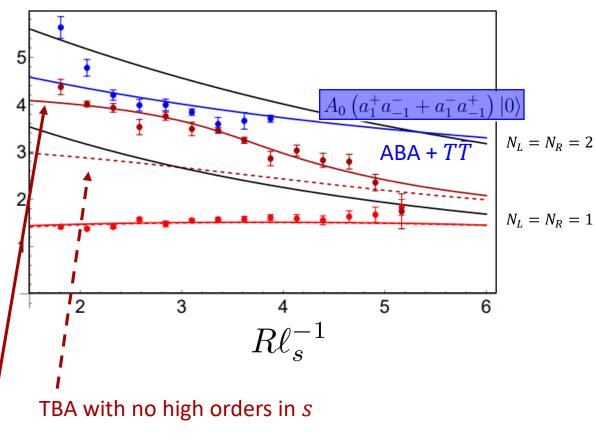
$$2\delta_{res}(p) = 2\sigma_2 an^{-1} \left(rac{8Q_\phi^2\ell_s^4p^6}{m^2-4p^2}
ight) + \sigma_1 rac{8Q_\phi^2\ell_s^4p^6}{m^2+4p^2}$$


The Axionic States

 N_L, N_R |J| P_{\perp} P_{\parallel} String State $N_L = N_R = 0$ 0 + + $|0\rangle$ 0 + + + $\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $(a_1^+a_{-1}^- - a_1^-a_{-1}^+)|0\rangle$ $N_L = N_R = 1$ $(a_1^+a_{-1}^+ + a_1^-a_{-1}^-)|0\rangle$ $\left(a_1^+ a_{-1}^+ - a_1^- a_{-1}^-\right)|0\rangle$ $\left(a_{2}^{+}a_{-2}^{-}+a_{2}^{-}a_{-2}^{+}\right)\left|0\right\rangle$ $(a_2^+a_{-2}^- - a_2^-a_{-2}^+)|0\rangle$ + $(a_1^+a_1^+a_{-1}^-a_{-1}^-+a_1^-a_1^-a_{-1}^+a_{-1}^+)|0\rangle$ + $(a_1^+a_1^+a_{-1}^-a_{-1}^- - a_1^-a_1^-a_{-1}^+a_{-1}^+)|0\rangle$ $a_1^+a_1^-a_{-1}^+a_{-1}^-|0\rangle$ + ± ± ± + $\left[(a_1^+ a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ + a_2^- a_{-1}^+ a_{-1}^+) \right] |0\rangle$ $\left[(a_1^+ a_1^+ a_{-2}^- - a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ - a_2^- a_{-1}^+ a_{-1}^+) \right] |0\rangle$ $\left[(a_1^+ a_1^- a_{-2}^+ + a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^-) \right] |0\rangle$ $N_L = 2, N_R = 2$ $\left[(a_1^+ a_1^- a_{-2}^+ - a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^- - a_2^- a_{-1}^+ a_{-1}^-) \right] |0\rangle$ $(a_2^+a_{-2}^+ + a_2^-a_{-2}^-)|0\rangle$ _ + $\left(a_{2}^{+}a_{-2}^{+}-a_{2}^{-}a_{-2}^{-}\right)|0\rangle$ 2 $\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{-}a_{-1}^{-}a_{-1}^{+}\right)+\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)\right]\left|0\right\rangle$ $\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-1}+a_{1}^{-}a_{1}^{-}a_{-1}^{-1}a_{-1}^{-1}\right)-\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-1}a_{-1}^{-1}+a_{1}^{-}a_{1}^{+}a_{-1}^{+1}a_{-1}^{+1}\right)\right]\left|0\right\rangle$ + $\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-1}a_{-1}^{-1} - a_{1}^{-}a_{1}^{-}a_{-1}^{-1}a_{-1}^{+1} \right) + \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-1}a_{-1}^{-1} - a_{1}^{-}a_{1}^{+}a_{-1}^{+1}a_{-1}^{-1} \right) \right] \left| 0 \right\rangle$ $\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-1} - a_{1}^{-}a_{1}^{-}a_{-1}a_{-1}^{-1} \right) - \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-1} - a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+1} \right) \right] \left| 0 \right\rangle$ 2 _ _ ± 3 $\left[(a_1^+ a_1^+ a_{-2}^+ + a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^- + a_2^- a_{-1}^- a_{-1}^-) \right] |0\rangle$ $\left| (a_1^+ a_1^+ a_{-2}^+ - a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^- - a_2^- a_{-1}^- a_{-1}^-) \right| |0\rangle$ \pm $(a_1^+a_1^+a_{-1}^+a_{-1}^++a_1^-a_1^-a_{-1}^-a_{-1}^-)|0\rangle$ 4 + $(a_1^+a_1^+a_{-1}^+a_{-1}^+-a_1^-a_1^-a_{-1}^-a_{-1}^-)|0\rangle$

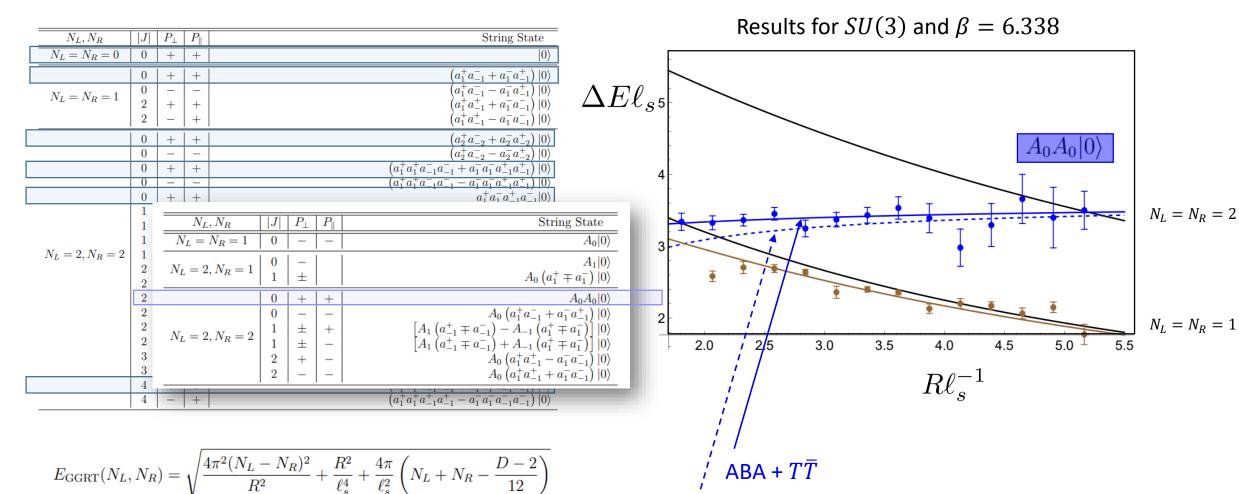

N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = 1, N_R = 0$	1	±		$\left(a_1^+ \pm a_1^-\right) \left 0\right\rangle$
$N_L = 2, N_R = 1$	0 0 1 1 2 2	+ - ± + - ±		$ \begin{array}{c} \left(a_{2}^{+}a_{-1}^{-} + a_{2}^{-}a_{-1}^{+}\right) 0\rangle \\ \left(a_{2}^{+}a_{-1}^{-} - a_{2}^{-}a_{-1}^{+}\right) 0\rangle \\ \left(a_{1}^{+}a_{1}^{-} - a_{2}^{-}a_{-1}^{+}\right) 0\rangle \\ \left(a_{1}^{+}a_{1}^{+}a_{-1}^{-} \pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right) 0\rangle \\ \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-} \pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right) 0\rangle \\ \left(a_{2}^{+}a_{-1}^{+} + a_{2}^{-}a_{-1}^{-}\right) 0\rangle \\ \left(a_{2}^{+}a_{-1}^{+} - a_{2}^{-}a_{-1}^{-}\right) 0\rangle \\ \left(a_{1}^{+}a_{1}^{+}a_{-1}^{+} \pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right) 0\rangle \end{array} $

Operator that creates a massive excitation with momentum $\frac{2\pi k}{R}$



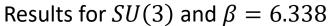
Results: the 0^{--} state and the axion

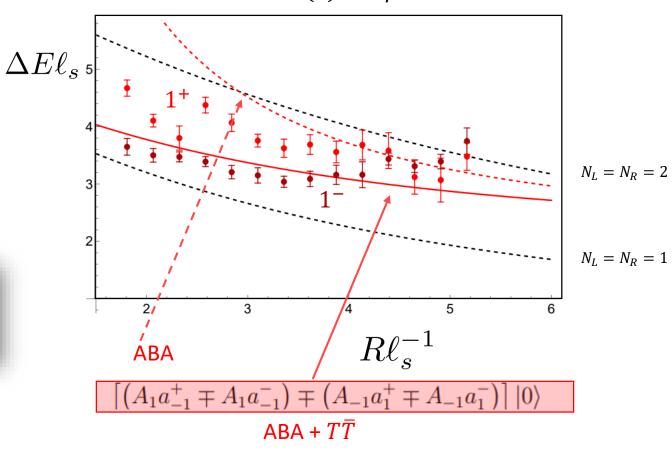
$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2(N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$


Results for SU(3) and $\beta = 6.338$

TBA with higher orders $s^4 l_s^{-8}$ $2\delta_{anti}(s) = \frac{s}{4} + \frac{11s^2}{192\pi} + a_3 s^3 + a_4 s^4 + \cdots$

Results: the 0^{++} states and the axion

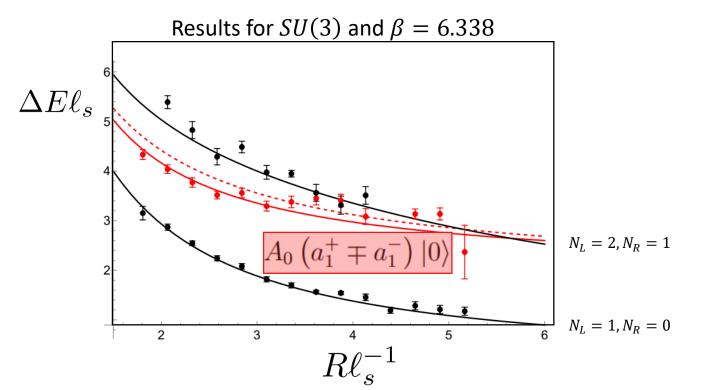

ABA



Results: the 1^+ , 1^- ground states

N_L, N_R	J	P_{\perp}	$ P_{\parallel} $			String State
$N_L = N_R = 0$	0	+	+			$ 0\rangle$
	0	+	+			$\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = N_R = 1$	0	-	-			$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\ket{0}$
$I \cdot L = I \cdot R = I$	2	+	+			$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right) 0\rangle$
	2	-	+			$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
	0	+	+			$\left(a_{2}^{+}a_{-2}^{-}+a_{2}^{-}a_{-2}^{+}\right) 0\rangle$
	0	-	-			$\left(a_{2}^{+}a_{-2}^{-}-a_{2}^{-}a_{-2}^{+}\right)\left 0\right\rangle$
	0	+	+			$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-} + a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+}\right) 0\rangle$
	0	_	_			$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}a_{-1}^{+}\right) 0\rangle$
	0	+	+			$a_1^+ a_1^- a_{-1}^+ a_{-1}^- 0\rangle$
	1	±	+			$\left[(a_1^+ a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_{-2}^- a_{-2}^+ + a_2^- a_{-1}^+ a_{-1}^+) \right] 0\rangle$
	1	±	-			$\left[(a_1^+ a_1^+ a_{-2}^ a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ - a_2^- a_{-1}^+ a_{-1}^+) \right] 0\rangle$
M O M O	1	±	+			$\left[(a_1^+ a_1^- a_{-2}^+ + a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^-) \right] 0\rangle$
$N_L = 2, N_R = 2$	1	±	-			$\left[(a_1^+ a_1^- a_{-2}^+ - a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^ a_2^- a_{-1}^+ a_{-1}^-) \right] 0\rangle$
	2	+	+			$\begin{pmatrix} a_{2}^{+}a_{-2}^{+} + a_{2}^{-}a_{-2}^{-} \end{pmatrix} 0\rangle$
	2	_	+	e/ .		$\left(a_{2}^{+}a_{-2}^{+}-a_{2}^{-}a_{-2}^{-}\right) 0\rangle$
			0	+	+	$A_0A_0 0\rangle$
			0	_	_	$A_0 \left(a_1^+ a_{-1}^- + a_1^- a_{-1}^+ \right) 0\rangle$
N.T.	9 M		1	±	+	$A_1 \left(a_{-1}^+ \mp a_{-1}^- \right) - A_{-1} \left(a_1^+ \mp a_1^- \right) 0\rangle$
$IV_L =$	= 2, IV	$T_R = 2$	1	±	_	$A_1 \left(a_{-1}^+ \mp a_{-1}^- \right) + A_{-1} \left(a_1^+ \mp a_1^- \right) 0 \rangle$
			2	+	-	$A_0 \left(a_1^+ a_{-1}^+ - a_1^- a_{-1}^- \right) 0\rangle$
			2	-	-	$A_0 \left(a_1^+ a_{-1}^+ + a_1^- a_{-1}^- \right) 0\rangle$
	4	-	+			

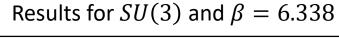
$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2(N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

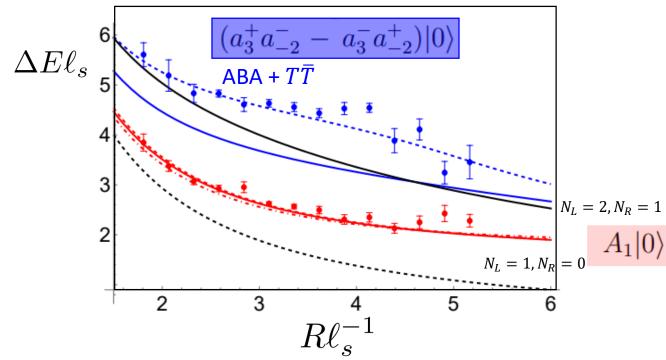


Results: The J=1, q=1 ground, $1^{\rm st}$ and $2^{\rm nd}$ excited states

N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = 1, N_R = 0$	1	±		$\left(a_1^+ \pm a_1^-\right) \ket{0}$
	0	+		$\left(a_{2}^{+}a_{-1}^{-} + a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
	0	_		$(a_2^+a_{-1}^ a_2^-a_{-1}^+) 0\rangle$
	1	±		$(a_1^+a_1^+a_{-1}^-\pm a_1^-a_1^-a_{-1}^+) 0\rangle$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right) 0\rangle$
	2	+		$(a_2^+a_{-1}^+ + a_2^-a_{-1}^-) 0\rangle$
	2	_		$(a_2^+ a_{-1}^+ - a_2^- a_{-1}^-) 0\rangle$
	3	±		$(a_1^+ a_1^+ a_{-1}^+ \pm a_1^- a_1^- a_{-1}^-) 0\rangle$

	N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
	$N_L = N_R = 1$	0	_	-	$A_0 0 angle$
	$N_{-} = 2 N_{-} = 1$	0	-		$A_1 0 angle$
	$N_L = 2$, $N_R = 1$	1	±		$A_0\left(a_1^+ \mp a_1^-\right) 0\rangle$
		0	+	+	$A_0A_0 0\rangle$
		0	_	_	$A_0 \left(a_1^+ a_{-1}^- + a_1^- a_{-1}^+ \right) 0\rangle$
	$N_L = 2, N_R = 2$	1	±	+	$\left[A_1 \left(a_{-1}^+ \mp a_{-1}^- \right) - A_{-1} \left(a_1^+ \mp a_1^- \right) \right] 0\rangle$
$N_L = 2$, $N_R =$	$IV_L = 2$, $IV_R = 2$	1	±	_	$\left[A_1 \left(a_{-1}^+ \mp a_{-1}^- \right) + A_{-1} \left(a_1^+ \mp a_1^- \right) \right] 0\rangle$
		2	+	_	$A_0 \left(a_1^+ a_{-1}^+ - a_1^- a_{-1}^- \right) 0\rangle$
		2	-	_	$A_0 \left(a_1^+ a_{-1}^+ + a_1^- a_{-1}^- \right) 0\rangle$




$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2(N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right) + \left(\frac{2\pi q}{R}\right)^2}$$

Results: The 0^- , q=1 ground and first excitations

N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = 1, N_R = 0$	1	±		$\left(a_1^+ \pm a_1^-\right) 0\rangle$
	0	+		$\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
	0	_		$\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
	1	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{-1}^{-}a_{-1}^{+}\right) 0\rangle$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right) 0\rangle$
	2	+		$\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right) 0\rangle$
	2	-		$\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right) 0\rangle$
	3	±		$\left(a_1^+ a_1^+ a_{-1}^+ \pm a_1^- a_1^- a_{-1}^-\right) 0\rangle$

	N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
	$N_L = N_R = 1$	0	_	_	$A_0 0 angle$
	N - 2 N - 1	0	_		$A_1 0 angle$
	$N_L = 2$, $N_R = 1$	1	土		$A_0\left(a_1^+ \mp a_1^-\right) 0\rangle$
$N_L = 2, N_R = 2$		0	+	+	$A_0A_0 0 angle$
		0	_	_	$A_0 \left(a_1^+ a_{-1}^- + a_1^- a_{-1}^+ \right) 0\rangle$
	$N_r - 2 N_p - 2$	1	±	+	$\begin{bmatrix} A_1 \left(a_{-1}^+ \mp a_{-1}^- \right) - A_{-1} \left(a_1^+ \mp a_1^- \right) \\ A_1 \left(a_{-1}^+ \mp a_{-1}^- \right) + A_{-1} \left(a_1^+ \mp a_1^- \right) \end{bmatrix} 0\rangle$
	1	±	-	$\left[A_1\left(a_{-1}^+ \mp a_{-1}^-\right) + A_{-1}\left(a_1^+ \mp a_1^-\right)\right] 0\rangle$	
		2	+	_	$A_0 \left(a_1^+ a_{-1}^+ - a_1^- a_{-1}^- \right) 0\rangle$
		2	_	-	$A_0 \left(a_1^+ a_{-1}^+ + a_1^- a_{-1}^- \right) 0\rangle$

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2(N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right) + \left(\frac{2\pi q}{R}\right)^2}$$

Outlook

- Low-lying spectrum is given by an effective theory with one massive axion
- The interaction involving axions can be approximated by the $T\overline{T}$ deformation
- We observe two towers of states (phonon) + (axions + phonon) states
- There is an axion in 4D SU(N) Gauge Theories
- We have obtained the spectrum of closed flux-tubes in 4D SU(N) Gauge Theories for all configurations of $\{J, P_{\perp}, P_{\parallel}\}$ using LGTs
- So far there is no effective string theory describing the open flux tube
- With collaborators we investigate the open flux tube [A. Sharifian poster]
- TBA Analysis is needed for the open flux tube

