Intrinsic width of the flux tube in $2+1$ dimensional Yang–Mills theories

Lorenzo Verzichelli

Soon on arXiv with Michele Caselle, Elia Cellini, Alessandro Nada, Dario Panfalone

Department of Physics, University of Turin Istituto Nazionale Fisica Nucleare, section of Turin

Lattice conference in Liverpool 31 / 7 / 2024

LATTICE 2024 متلفاته الر **LIVERPOOL**

Flux tube as a string

Chromo-Electric and Chromo-Magnetic fields concentrated in a "tube"

In effective string theory: flux tube as vibrating string \implies finite width

Intrinsic width: residual width when string fluctuation are removed

> **LATTICE 2024** متلفاته الر **LIVERPOOL**

[Intrinsic width of the flux tube in 2+1 dimensional Yang–Mills theories](#page-0-0) Lorenzo Verzichelli 2/16

EST predictions

$$
w_{\text{EST}}^2 \sim \int \mathcal{D}X(\xi_1, \xi_2) \, X^2 \, e^{-S_{\text{EST}}[X]}
$$

No intrinsic width involved! All due to fluctuations

At low temperature Lüscher-Munster-Weisz Nucl.Phys.B 180 (1981):

$$
w_{\text{EST}}^2 = \frac{D-2}{2\pi\sigma} \log\left(\frac{d}{R_c}\right) + \dots
$$

At high temperature Caselle-Allais [arXiv:0812.0284]:

$$
w_{\text{EST}}^2 = \frac{d}{4L_t} + \frac{1}{2\pi} \log\left(\frac{L_t}{L_c}\right) + \dots
$$

LATTICE 2024 وتلفقها **LIVERPOOL**

The flux tube profile: definitions

In order to see its width: we study the profile of the flux tube

Longitudinal Chromo-Electric field: $F_{0x}(y)$

The flux tube: non-Gaussianity

Long vibrating string: we expect a Gaussian profile

$$
SU(2) in D = 2 + 1
$$

$$
\beta = 10.87
$$

$$
N_t = 30
$$

$$
T/T_c = 0.23
$$

$$
a\sqrt{\sigma} = 0.01728(23)
$$

$$
R_c/a = 3.9
$$

$$
d/a = 9
$$

Data obtained with multilevel-algorithm as in Gliozzi-Pepe-Wiese [\[arXiv:1010.1373\]](https://arxiv.org/abs/1010.1373)

> **LATTICE 2024** وتلفظت لو **LIVERPOOL**

The flux tube: Clem fit

Long vibrating string: we expect a Gaussian profile

$$
\beta = 10.87
$$

$$
N_t = 30
$$

$$
T/T_c = 0.23
$$

$$
a\sqrt{\sigma} = 0.01728(23)
$$

$$
R_s/a = 3.9
$$

$$
a\sqrt{\sigma} = 0.01728(23)
$$

$$
R_c/a = 3.9
$$

$$
d/a = 9
$$

$$
p(y) = A K_0 \left(2\mu \sqrt{y^2 + \xi_v^2} \right)
$$

LATTICE 2024 وتلفقها **LIVERPOOL**

$$
p(y) = A K_0 \left(2\mu \sqrt{y^2 + \xi_v^2} \right) \approx \frac{A\sqrt{\pi}}{2} \frac{\exp \left(-2\mu \sqrt{y^2 + \xi_v^2} \right)}{\sqrt{\mu} \left(y^2 + \xi_v^2 \right)^{1/4}}
$$

Already used in $D = 3 + 1$, based on the dual superconductor description (e.g. Cea-Cosmai-Papa [\[arXiv:1208.1362\]\)](https://arxiv.org/abs/1208.1362)

 ξ_v and $\lambda = 1/(2\mu)$: the two length scales of the superconductor In particular λ is the London length

For small $y \ll \xi_v$ Gaussian peak, with width $\sqrt{\xi_v/\mu}$ For large $y \gg \xi_v$ Exponential decay, with characteristic length $\lambda = 1/(2\mu)$

In this regime λ is the intrinsic width of the flux tube

[Intrinsic width of the flux tube in 2+1 dimensional Yang–Mills theories](#page-0-0) Lorenzo Verzichelli **Lorenzo Verzichelli**

- We could not find consistent values for ξ_n and μ to fit all our data
- Even the "type" of the superconductor (determined by ξ_v/λ) seems to vary
- This limits the applicability of the Clem model

According to Clem:

$$
p(y) \approx \frac{A\sqrt{\pi}}{2} \frac{\exp\left(-2\mu\sqrt{y^2 + \xi_v^2}\right)}{\sqrt{\mu} (y^2 + \xi_v^2)^{1/4}}
$$

A high temperature: the exponent in the denominator seems to be bigger

LATTICE 2024 متلفقات **LIVERPOOL**

The profile and the Svetitsky–Yaffe mapping

We consider a D-dimensional $SU(N)$ gauge theory with a second order phase transition, where the \mathbb{Z}_N center symmetry is spontaneously broken.

We can extract the correlators of the gauge theory near the deconfinament temperature from those of the \mathbb{Z}_N -symmetric, $(D-1)$ -dimensional spin model at the critical point.

- The Polyakov loop is mapped into the spin
- The plaquette is mapped into the energy

Further test of SY in the talk by Dario Panfalone

LATTICE 2024 وتلفظت لو

The profile near the phase transition

The spin-spin-energy correlator has been computed by Caselle and Grinza in [arXiv:1207.6523](https://arxiv.org/abs/1207.6523) From those results:

$$
\text{profile}(y, d) = A \frac{2\pi d}{K_0(md)} \frac{\exp\left(-m\sqrt{4y^2 + d^2}\right)}{4y^2 + d^2}
$$

$$
p_{\mathsf{Clem}} \approx \frac{A\sqrt{\pi}}{2} \frac{\exp\left(-2\mu\sqrt{y^2 + \xi_v^2}\right)}{\sqrt{\mu} \left(y^2 + \xi_v^2\right)^{1/4}}
$$

 m : same mass scale as in $\langle P\,P^{\dagger}\rangle$:

 $\xi_v \rightarrow d$, not any more free parameter

$$
\langle P(0,0) P^{\dagger}(0,d) \rangle \sim \exp(-m \, d)
$$

We can test this assumption fitting high temperature numerical results Only A and m are free parameters of the model (one less than Clem) We can compare m to the value extracted from $\langle P\, P^\dagger\rangle$

LATTICE 2024 متلفقات **LIVERPOOL**

Test for $T = 0.70T_c$

$$
\beta = 10.87
$$

\n
$$
N_t = 10
$$

\n
$$
T/T_c = 0.70
$$

\n
$$
a\sqrt{\sigma} = 0.13130(86)
$$

\n
$$
R_c/a = 3.9
$$

\n
$$
d/a = 11
$$

$$
m_{\text{fit}} = 0.1099(38)
$$

$$
m_{PP^{\dagger}} = 0.11064(24)
$$

LATTICE 2024 معطفين **LIVERPOOL**

[Intrinsic width of the flux tube in 2+1 dimensional Yang–Mills theories](#page-0-0) Lorenzo Verzichelli 11/16

Test at multiple distances

 m_{fit} agrees with $m_{PP\uparrow}$ for all the considered distances.

It is possible to perform a combined fit of all the data with a single value of A and m

Prediction:

$$
profile(y, d) = \frac{A \, 2\pi \, d}{K_0(m \, d)} \dots
$$

LATTICE 2024 وتلفظت لو **LIVERPOOL**

Test for $T = 0.87T_c$

$$
\beta = 13.42
$$

\n
$$
N_t = 10
$$

\n
$$
T/T_c = 0.87
$$

\n
$$
a\sqrt{\sigma} = 0.10490(51)
$$

\n
$$
R_c/a = 4.9
$$

\n
$$
d/a = 15
$$

$$
m_{\text{fit}} = 0.0387(27)
$$

$$
m_{PP^{\dagger}} = 0.04070(46)
$$

LATTICE 2024 متعادين **LIVERPOOL**

[Intrinsic width of the flux tube in 2+1 dimensional Yang–Mills theories](#page-0-0) Lorenzo Verzichelli 13/16

Linear broadening at high temperature

Gliozzi-Pepe-Wiese [\[arXiv:1010.1373\]:](https://arxiv.org/abs/1010.1373) linear broadening of the flux tube at large d :

$$
w^{2}(d) = \frac{\int dy \, y^{2} \, \text{profile}(y, d)}{\int dy \, \text{profile}(y, d)} \sim d
$$

In the model from SY:

$$
\text{profile}(y,d) \propto \frac{\exp\left(-m\sqrt{4y^2+d^2}\right)}{4y^2+d^2}
$$

the intrinsic width is constant but the Gaussian peak broadens
LATTICE 2024 متلفقات **LIVERPOOL**

About the flux tube:

- The Clem formula seems to describe its profile at low temperature
- A high temperature deviations seem to appear
- The Svetitsky–Yaffe mapping provides a good model for the profile at high temperature
- In such model there is only one mass scale, determining the intrinsic width
- Its value is in good agreement with the mass scale in the Polyakov-Polyakov correlators
- Understand the crossover between Clem-like and Svetitsky–Yaffe-like regime
- Investigate how the Clem parameters depend on the temperature and the distance
- \bullet We are obtaining similar results for $SU(3)$
- We will soon be able to compare these results with EST simulations (See talk by Elia Cellini)
- Svetitsky–Yaffe could be applied to the 4-dimensional $SU(2)$ theory

Thank you for your attention!

Intrinsic width of the flux tube in 2+1 dimensional Yang-Mills theories Lorenzo Verzichelli