The Four Gluon Vertex from Lattice QCD

Orlando Oliveira (U. Coimbra, Portugal, orlando@uc.pt)

Manuel Colaço, Paulo Silva

Phys. Rev. D109 (2024) 7, 074502 [arXiv:2401.12008]

@U. Coimbra, Portugal

Lattice 2024, Liverpool, July 2024

Motivation

QCD Dynamics at a fundamental level

DSE, etc.)

Effective charge $\frac{g^2}{\Lambda \pi} \Gamma^{(4g)}(p^2) p^2 D(p^2)$

Landau gauge

importance of higher order corrections (two loop contributions to gluon

Test our understanding of QCD Green functions (ghost dominance at IR)

(pure gauge) Lattice point of view

Lattice Approach

$A^a_\mu(x)$ Importance Sampling allows to access the gluon field

Larger sets of configurations

$\mathcal{G}^{(n)}(x_1, \dots, x_n) = \langle 0 | T \left(A^{a_1}_{\mu_1}(x_1) \cdots A^{a_n}_{\mu_n}(x_n) \right) | 0 \rangle$

Disconnected parts

kinematical configurations <u>or</u> **Combinations of components**

4-gluon correlation function $\langle A_{\mu_1}(p_1) A_{\mu_2}(p_2) A_{\mu_3}(p_3) A_{\mu_4}(p_4) \rangle =$

$= \int \mathcal{D}A \ A_{\mu_1}(p_1) \ A_{\mu_2}(p_2) \ A_{\mu_3}(p_3) \ A_{\mu_4}(p_4) \ e^{-S}$

 V^2 V^2 V^2

4-gluon correlation function

+

Single momentum scale

In Landau gauge simplifies the tensor analysis

Contributions only from the tensors proportional to $\,\delta_{\mu
u}$

Recent Continuum Calculations

C Kellermann, C S Fischer, Phys. Rev. D 78 (2008) 025015 D Binosi, D Ibañez, J Papavassiliou, JHEP 1409 (2014) 059 A K Cyrol, M Q Huber, L von Smekal, Eur Phys J C 75 (2015) 102 A C Aguilar, M N Ferreira, J Papavassiliou, L R Santos, Eur Phys J C 84 (2024), 676 N Barrios, P De Fabritiis, M Peláez, Phys Rev 109 (2024) L091502

D Binosi, D Ibañez, J Papavassiliou, JHEP 1409 (2014) 059

 $\left. \Gamma^{abcd}_{\mu\nu\rho\sigma}(p,p,p,-3p) \right|_{gg} = V_{\Gamma^{(0)}}(p^2) \Gamma^{abcd(0)}_{\mu\nu\rho\sigma} + V_G(p^2) G^{abcd}_{\mu\nu\rho\sigma},$

 $G^{abcd}_{\mu\nu\rho\sigma} = (\delta^{ab}\delta^{cd} + \delta^{ac}\delta^{bd} + \delta^{ad}\delta^{bc})\left(g_{\mu\nu}g_{\rho\sigma} + g_{\mu\rho}g_{\nu\sigma} + g_{\mu\sigma}g_{\nu\rho}\right)$

+ 2 permutations

+ 2 permutations

 $R_{\mu
u
ho\sigma}$

 $p \; [\text{GeV}]$

A K Cyrol, M Q Huber, L von Smekal, Eur Phys J C 75 (2015) 102

IR dominant (primitively divergent diagrams) One-loop contributions (disregard contributions with five-point diagrams and ghost-gluon five-point functions) Take tree level tensor structure for three-gluon and four-gluon diagrams

For tensor analysis see:

J A Gracey, Phys Rev D90, 025011 (2014) arXiv: 1406.1618 G Eichmann, C S Fischer, W Heupel, Phys Rev D92, 056006 (2015) arXiv: 1505.06336

$$\widetilde{\Gamma}^{(0)\ abcd}_{\mu\nu\eta\zeta} = f_{abr}f_{cdr}\left(\delta_{\mu\eta}\delta_{\nu\zeta} - \delta_{\mu\zeta}\delta_{\nu\eta}\right) + f_{acr}f_{bdr}\left(\delta_{\mu\nu}\delta_{\eta\zeta} - \delta_{\mu\zeta}\delta_{\nu\eta}\right) + f_{adr}f_{bcr}\left(\delta_{\mu\nu}\delta_{\eta\zeta} - \delta_{\mu\eta}\delta_{\nu\zeta}\right)$$

$$\widetilde{\Gamma}^{(1)\ abcd}_{\mu\nu\eta\zeta} = d_{abr}d_{cdr}\left(g_{\mu\eta}g_{\nu\zeta} + g_{\mu\zeta}g_{\nu\eta}\right) + d_{acr}d_{bdr}\left(g_{\mu\zeta}g_{\nu\eta} + g_{\mu\nu}g_{\eta\zeta}\right) + d_{adr}d_{bcr}\left(g_{\mu\nu}g_{\eta\zeta} + g_{\mu\eta}\right)$$

$$\widetilde{\Gamma}^{(2)\ abcd}_{\mu\nu\eta\zeta} = \left(\delta^{ab}\delta^{cd} + \delta^{ac}\delta^{bd} + \delta^{ad}\delta^{bc}\right)\left(\delta_{\mu\nu}\delta_{\eta\zeta} + \delta_{\mu\eta}\delta_{\nu\zeta} + \delta_{\mu\zeta}\delta_{\nu\eta}\right)$$

$$\widetilde{\Gamma}^{= F(p^2)}\widetilde{\Gamma}^{(0)} + G(p^2)\widetilde{\Gamma}^{(1)} + H(p^2)\widetilde{\Gamma}^{(2)}$$

Not an orthogonal basis

 $\mathcal{G}^{(4)} = \widetilde{\Gamma} \left(P^{\perp}(p) D(p^2) \right)^3 \left(P^{\perp}(3p) D(9p^2) \right)$

Measure the three form factors

$$F^{(0)}(p^2) \qquad F$$

Tree Level Tensor

 $F^{(1)}(p^2) = F^{(2)}(p^2)$

β	—	6.	0	(<i>a</i> =	 0.1	0	2
•								

Lattice	Configs	Pmin
32 ⁴	9038	381 MeV
48 ⁴	9035	254 MeV

fm
$$a^{-1} = 1.943 \text{ GeV}$$

Averaged over equivalent momenta, including the negative momenta !

 $s = \frac{\mathbf{1}}{4} \sum_{i} p_i^2$

Continuum Calculations

p [GeV]

One loop truncated Dyson-Schwinger equation by

A C Aguilar, M N Ferreira, J Papavassiliou, L R Santos, Eur Phys J C 84 (2024) 676

Curci-Ferrari model (massive QCD)

N Barrios, P De Fabritiis, M Peláez, Phys Rev D 109 (2024) L091502

Summary and Conclusions

- gluon correlation functions up to 4-external legs are possible with standard lattice methods (call for large statistical ensembles)
- Dominated by tree level tensor structure but not only
- Good (at least) qualitative agreement between Lattice and continuum approaches
- Look at other kinematics and extend collaboration to get a better picture
- Need large statistics or methods to reduce variance

Work supported by national funds from FCT -- Fundação para a Ciência e a Tecnologia, I.P., Portugal, within projects UIDB/04564/2020, UIDP/04564/2020 and CERN/FIS-PAR/0023/2021. Simulations performed in supercomputers Navigator, managed by LCA -- University of Coimbra [url: www.uc.pt/lca], Lindgren, Sisu (through PRACE) projects COIMBRALATT [DECI-9] and COIMBRALATT2 [DECI-12]) and Bob through FCT project CPCA/A2/6816/2020.

