Introduction to topological data analysis for lattice field theory

Jeffrey Giansiracusa August 2024

Collaboration with: Biagio Lucini, Tin Sulejmanpasic, Xavier Crean, Nick Sale

1. HOMOLOGY

Counts holes / voids

Counts holes / voids

2. Persistent homology shows how the counts evolve with a parameter

1. HOMACLOCY

o Can do arithmetic with holes

Counting holes

1

o Can do arithmetic with holes \blacktriangleright There is a vector space H_1 of holes

Counting holes

o Can do arithmetic with holes \blacktriangleright There is a vector space H_1 of holes Number of holes = $\dim H_1$

Counting holes

o Can do arithmetic with holes \blacktriangleright There is a vector space H_1 of holes Number of holes = $\dim H_1$

Counting holes

Quepue: vector spaces

 $H_0(X), H_1(X), H_2(X), H_3(X), \dots$

Oulpul: veclor spaces

 $H_0(X),$

Connected components $H_1(X),$

Holes

 $H_2(X),$

 $H_3(X), \ldots$

Voids

Higher voids

Oulpul: veclor spaces

 $H_0(X),$

Connected components

 $H_1(X),$

Holes

Dimension = number of holes/voids

 $H_{2}(X),$

Voids

 $H_3(X), \ldots$

Higher voids

Output: vector spaces

 $H_0(X),$

Connected components $H_1(X),$

Holes

Dimension = number of holes/voids

What is X?

 $H_{2}(X),$

Voids

 $H_3(X), \ldots$

Higher voids

Dim H_0 Dim H_1 Dim H_2 Dim H_3

1

0

•

Dim H_0 Dim H_1 Dim H_2 Dim H_3

Circle

0

 \bullet

Number of components

Number of Loops

Dim H₀ Dim H₁ Dim H_2 Dim H_3

Circle

0

 \bullet

Number of components

Number of Loops

Dim H₀ Dim H₁ Dim H₂ Dim H_3

0

1

Circle

1

0

 \bullet

Number of components

Number of Loops

Dim H_0 Dim H₁ Dim H2 Dim H_3

0 1

1

20

1

1

Given a statistical system on a lattice

Criven a statistical system on a lattice

Boltzmann distribution + Monte Carlo -> configurations ϕ_1 , ϕ_2 , ϕ_3 , ...

Criven a statistical system on a lattice

Boltzmann distribution + Monte Carlo -> configurations ϕ_1 , ϕ_2 , ϕ_3 , ...

Criven a statistical system on a lattice

Bollzmann distribution + Monte Carlo \rightarrow configurations $\phi_1, \phi_2, \phi_3, \ldots$

E.g., 2d XY-model on an $L \times L$ lattice $\phi_i \in U(1)^{L^2}$

Choose a scale and compute homology $H_*(X)$

Choose a scale and compute homology $H_*(X)$

Choose a scale and compute homology $H_*(X)$

Methodology 1: Quantify the topology of the (the dense part of) Boltzmann distribution on configuration space.

Choose a scale and compute homology $H_*(X)$

Which scale?

Methodology 1: Quantify the topology of the (the dense part of) Boltzmann distribution on configuration space.

Choose a scale and compute homology $H_*(X)$

Which scale? Use them all!

Methodology 1: Quantify the topology of the (the dense part of) Boltzmann distribution on configuration space.

Choose a scale and compute homology $H_*(X)$

Which scale? Use them all! Persistent homology

Configuration ϕ

Geometric object $X(\phi)$

$configuration \phi$

Geometric object $X(\phi)$ Homology $H_*(X(\phi))$

$configuration \phi$

Cecometric object $X(\phi)$

Then do statistical analysis on the homology

$configuration \phi$

Homology $H_*(X(\phi))$

Creometric object $X(\phi)$

Homology $H_*(X(\phi))$

Then do statistical analysis on the homology

Configuration ϕ

XY-model example

XY-model example

XY-model example

1. Fill in an edge if the spins are close.

XY-model example

1. Fill in an edge if the spins are close.

XY-model example

1. Fill in an edge if the spins are close.

XY-model example

1. Fill in an edge if the spins are close.

XY-model example

1. Fill in an edge if the spins are close.

XY-model example

1. Fill in an edge if the spins are close.

2. Fill in a plaquette if all the edges are present.

XY-model example

1. Fill in an edge if the spins are close.

2. Fill in a plaquette if all the edges are present.

XY-model example

1. Fill in an edge if the spins are close.

2. Fill in a plaquette if all the edges are present.

A continuous map of geometric objects $X \to Y$

induces a linear map $H_*(X) \to H_*(Y)$

A continuous map of geometric objects $X \to Y$

induces a linear map $H_*(X) \to H_*(Y)$

 $X_1 \to X_2 \to \cdots$

A sequence of geometric objects

induces a sequence of vector spaces and linear maps

 $H_*(X_1) \to H_*(X_2) \to \cdots$

$H_*(X_1) \to H_*(X_2) \to H_*(X_3) \to H_*(X_4) \to \cdots$

One can choose bases compatible with the linear maps

$H_*(X_1) \to H_*(X_2) \to H_*(X_3) \to H_*(X_4) \to \cdots$

One can choose bases compatible with the linear maps

$H_*(X_1) \to H_*(X_2) \to H_*(X_3) \to H_*(X_4) \to \cdots$

สมันระดังใหญ่และอาการก็สองส์ส่งมีสารสะเวลบกละที่เอาที่สมันระหม่อกใสองส์ส่งมีสารสะเวลบกละที่เอาที่สมันส์สารสะเว การก็สารสี่ใหญ่และอาการก็สองส์ส่งมีสารสะเวลบกละที่เอาที่สมันส์สี่สะหม่อกใสองส์ส่งมีสารสะเวลบกละที่เอาที่สมันส์ส

nerinie Statisticie Sector State Decision

One can choose bases compatible with the linear maps

$H_*(X_1) \to H_*(X_2) \to H_*(X_3) \to H_*(X_4) \to \cdots$

aninie Stationical solution becaused

One can choose bases compatible with the linear maps

$H_*(X_1) \to H_*(X_2) \to H_*(X_3) \to H_*(X_4) \to \cdots$

no water all a file of the file of the file of the file of the

One can choose bases compatible with the linear maps

$H_*(X_1) \to H_*(X_2) \to H_*(X_3) \to H_*(X_4) \to \cdots$

Death Lime

TRAINER STATION TO A STATE AND A STATE AND A STATE

Birth Lime

One can choose bases compatible with the linear maps

$H_*(X_1) \to H_*(X_2) \to H_*(X_3) \to H_*(X_4) \to \cdots$

Death Lime

Birth Lime

One can choose bases compatible with the Linear maps

$H_*(X_1) \to H_*(X_2) \to H_*(X_3) \to H_*(X_4) \to \cdots$

Death Lime

in a standard and a s A standard and a stand

Birth Lime

One can choose pases compatible with the linear maps

$H_*(X_1) \to H_*(X_2) \to H_*(X_3) \to H_*(X_4) \to \cdots$

Death Lime

Persistence diagram

o Vectorise persistence diagrams

ø Vectorise persistence diagrams @ Feed them into statistical analysis / ML

Vectorise persistence diagrams
Feed them into statistical analysis / ML
There is good software for these computations: GUDHI, Ripser, Giotto-TDA, and more

gauge theory.

@ Later today:

Xavier Crean on monopoles in U(1) gauge theory. Biagio Lucini on monopoles in SU(3) gauge theory.

@ Nick Sale used these tools to study vortices in SU(2)

Thank you