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Motivation

* Electromagnetic polarizabilities are important properties that shed light on
the internal structure of hadrons.

* What is Electromagnetic polarizability? Polarizability usually refers to the
tendency of matter, when sul%iected to an electric/magnetic field, to

?_c?éjire an electric/magnetic ipole moment in proportion to that applied
ield.

* The quarks respond to probing electromagnetic fields, revealing the charge
and current distributions inside the hadron.
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Why use four-point functions?

* Understanding electromagnetic polarizabilities has been a long-term goal
of lattice QCD.

* The standard tool to compute polarizabilities is the background field
method which uses two-point functions, but there are a number of unique
challenges.

* The standard plateau technique of extracting energy from the large time
behavior of the two-point correlator fails for charged hadrons because a
charged hadron accelerates in an electric field. Such motions are unrelated
to polarizability and must be isolated from the deformation due to quark
and gluon dynamics inside the hadron.

* In this work, we examine the use of four-point functions to extract
Eo!jarizabilities. As we shall see, the method is ideally suited to charged
adrons.
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Charged Kaon

* The kaon is one of the simplest hadronic system to demonstrate the
methodology.

* We use exactly conserved lattice currents
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Compton scattering in lattice QCD

connected insertion: different flavor

connected insertion: same flavor

connected insertion: same flavor Z-graph

disconnected insertion: single loop, double current

disconnected insertion: single loop

disconnected insertion: double loop i,ﬁy‘glcs
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Charged Kaon polarizabilities

e Kaon Electric Polarizability
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Limitations and possible improvements

* 99 configurations

* Only lowest two momentums used for analysis (linear fits)
* No disconnected diagrams

* Quenched Wilson fermions

* Proof of concept simulation
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Four-point function Q,,
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Normalized four-point functions for separate diagrams
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Normalized four-point functions for diagram a+b

Effective mass
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Elastic form factors
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Conclusion

* Proof of concept simulations for K+ with quenched Wilson fermions
on 243 x 48 lattices with reasonable error bars.

* Four-point functions offer good physics payout
- Kaon masses

- form factors (charge radius)
- polarizabilities
- analyze three particles at once (charged kaon, neutral kaon, phi)
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