

Applications of nucleon four-point correlation functions

Xu Feng

2024.07.01

4-point correlation function – frontiers in lattice QCD

Challenges in nucleon 4pt correlation functions (I)

- \triangleright Nucleon system severe signal/noise (S/N) problem
	- Statistics tells us that variance is given by $\langle O^2 \rangle$ - $\langle O \rangle^2$

• S/N is $\exp[-(M_N - \frac{3}{2}M_\pi)t]$ 4-pt function requires operators at 4 diff. time slice and thus needs large *t* separation

• Solution: optimized operators, variational analysis, reconstruction of ground/excited states

Challenges in nucleon 4pt correlation functions (II)

• Hadronic part from a typical 4-point function

• Perform the volume summation for each point

From 3-point to 4-point function

Solution: Field sparsening method

【Y. Li, S. Xia, XF, L. Jin, C. Liu, PRD 103 (2021) 014514】 【W. Detmold, D. Murphy, et. al. PRD 104 (2021) 034502】 【See also HLbL calculation in muon g-2】

- Less summation points may lead to lower precision
- It is not the case because of high correlation in lattice data
	- 102-103 times less points yields similar precision
- Used for pion, proton, g_A to verify its application

Utilize field sparsening method

• Reduce the computational cost by a factor of $10^{2}-10^{3}$ with almost no loss of precision!

Challenges in nucleon 4pt correlation functions (III)

\triangleright Short-distance divergence

• γW-box contribution to β decays

Low Q^2 - lattice QCD + Large Q^2 - OPE $\frac{1}{2}\int d^4x e^{-iQx}T\left[J_{\mu}^{em}(x)J_{\nu}^{W,A}(0)\right]$ $=\frac{\imath}{2Q^{2}}\left\{C_{a}(Q^{2})\delta_{\mu\nu}Q_{\alpha}-C_{b}(Q^{2})\delta_{\mu\alpha}Q_{\nu}\right\}$ $-C_c(Q^2)\delta_{\nu\alpha}Q_\mu\big\}\,J^{W,A}_\alpha(0)$ + $\frac{1}{6Q^2}C_d(Q^2)\epsilon_{\mu\nu\alpha\beta}Q_\alpha J_\beta^{W,V}(0)+\cdots$

XF, M. Gorchtein, L. Jin, et.al. PRL124 (2020) 19, 192002 P. Ma, XF, M. Gorchtein, et.al. PRL132 (2024) 191901 J. Yoo, T. Bhattacharya, R. Gupta et.al. PRD 108 (2023) 034508

• Non-trivial bilocal operator renormalization in rare kaon decays

Peng-Xiang Ma's talk Aug. 2nd, 14:15-14:35 Room: LT3

N. Christ, XF, A. Portelli, C. Sachrajda, PRD93 (2016) 114517

> Z. Bai, N. Christ, XF, et.al. PRL118 (2017) ²⁵²⁰⁰¹ **5**

Challenges in nucleon 4pt correlation functions (IV)

\triangleright IR divergence

• Two-photon exchange contribution to muonic hydrogen Lamb shift

Y. Fu, XF, L. Jin, C. Lu, PRL 128 (2022) 172002

Two photon propagators, very IR divergent! (IR divergence is related with vector form factor and its derivative at $q^2=0$)

Idea to solve IR divergence: infinite-volume reconstruction method 【X. Feng, L. Jin, PRD 100 (2019) 094509】

At large x separation, $H_{\mu\nu}(x)$ is dominated by intermediate nucleon state

With appropriate weight functions, we can use $H_{\mu\nu}(x)$ to reproduce charge conservation & charge radius

• For $N\pi$ intermediate state, although no IR divergence, convergence of Euclidean time integral can be very slow

We will see it in this talk $\longrightarrow N+\gamma^* \rightarrow N\pi$ transition by Y. Gao

Yu-Sheng Gao's talk July 29nd, 14:35-14:55

Challenges in nucleon 4pt correlation functions (V)

 \triangleright Exponentially growing contamination in Euclidean time

- Exponentially growing contamination in temporal integral!
- If X contains only single hadron or no hadron, a correct EW weight function in Euclidean time can be constructed
- If X contains two hadrons, finite-volume effects must be addressed properly \overrightarrow{X} Xin-Yu Tuo's talk

X. Tuo & X. Feng, arXiv:2407.16930

Aug. 2nd, 15:15-15:35 Room: LT3

Numerical calculations

 \triangleright Complicated quark field contractions with two current insertions

Examination of 4-pt function: charge conservation

Two currents inserted in one quark line Two currents inserted in two quark lines

Using the charge conservation to verify the contraction code

Examination of 4-pt function: charge radius

Nucleon polarizability and Compton scattering

 \triangleright Nucleon E&M polarizability are most central quantities relevant for Compton scattering

Determination of electric polarizabilities

 \triangleright For proton

Determination of electric polarizabilities

 \triangleright For neutron

Determination of electric polarizabilities

 \triangleright What is the primary source of discrepancy between lattice QCD and other studies?

Lattice calculations are performed at unphysical pion masses, ranging from 227 - 759 MeV

Unphysical quark mass effects

Background field technique is used, which converts 4pt function to 2pt function using Feynman-Hellman theorem

Hard to explore intermediate-state contributions and control systematics

Perform calculation at physical pion mass, using 4pt function

Why physical pion mass is important

 \triangleright Pion cloud in nucleon polarizabilities \triangleright LO in χ_{PT} :

Electric polarizability from 4-pt function

$$
\sum_{\substack{F \text{ with } T^{\mu\nu} \\ T^{\mu\nu}}} \text{Lattice QCD input } H^{\mu\nu}(x) \qquad \qquad F \longrightarrow T^{\mu\nu} \\ T^{\mu\nu} = \int d^4x \, e^{iqx} \langle N | J^{\mu}(x, t) J^{\nu}(0) | N \rangle = T^{\mu\nu}_{Born} + \frac{8\pi M}{e^2} \left[-(\beta_M + O(q)) K_1^{\mu\nu} + (\alpha_E + \beta_M + O(q)) K_2^{\mu\nu} \right]
$$

 \triangleright Derive 3 formula to calculate α_E

•
$$
P = (M, 0), q = (0, \vec{\xi})
$$
: $\alpha_E = -\frac{\alpha_{em}}{12M} \int d^4x \, \vec{x}^2 \left(H^{00}(x) - H^{00}_{GS}(x) \right) + \alpha_E^r$
\n• $P = (M, 0), q = (\xi, 0, 0, \xi)$: $\alpha_E = \frac{\alpha_{em}}{4M} \int d^4x \, (t + x_i)^2 \left(H^{0i}(x) - H^{0i}_{GS}(x) \right) + \alpha_E^r$
\n• $P = (M, 0), q = (\xi, 0)$: $\alpha_E = -\frac{\alpha_{em}}{12M} \int d^4x \, t^2 H^{ii}(x) + \alpha_E^r$ Our choice

Example 1 and α_F^r is analytically known

Figure $H^{ii}(x, t) = \langle N|J^i(x)J^i(0)|N\rangle$

$$
\alpha_E^r = \frac{\alpha_{em}}{M} \left(\frac{G_E^2(0) + \kappa^2}{4M^2} + \frac{G_E(0)\langle r_E^2 \rangle}{3} \right),
$$

 \equiv anomalous magnetic moment & charge radius $G_E(0) = 1/0$, for proton/neutron

 $v \sqrt{ }$

 $a \rightarrow u$

Polarizability α_F from $H_{ii}(x)$

However, lattice results are significantly below the PDG value.

Need new insight to turn the decent to the magic!

Nucleon polarizabilities and $N\pi$ **scattering**

Structure of hadronic function
$$
\int d^4x \ t^2 H_{ii}(x,t) = \int dt \ t^2 \sum_k \langle p|J_i(0)|k\rangle e^{-(E_k-M)t} \langle k|J_i(0)|p\rangle
$$

$$
= 4 \sum_k \frac{\langle p|J_i(0)|k\rangle \langle k|J_i(0)|p\rangle}{(E_k-M)^3}
$$

The dominant contribution is given by $|k\rangle = |N\pi\rangle$ states

 $|N\pi\rangle$ states contribution exhibits a peak at $t = 2.8 fm$, far exceeding our truncation at $t_0 \approx 0.75 fm$ Must calculate $N\pi$ contribution directly!

Wick contraction of $N\pi$ Rescattering

N π in the center of mass frame with mom. mode (100)

 G_1^- representation

 H^- representation

N π in the center of mass frame with mom. mode (110)

 H^- representation

N π in the center of mass frame with mom. mode (111)

 H^- representation

Matrix elements of $N\gamma \rightarrow N(p)\pi(-p)$ **with 4 lowest mom modes**

Limitations in the comparison between lattice QCD and χPT :
 $F = \frac{DT}{T}$ For χ PT, photon is very timelike & χ PT does not work well 27

Momentum dependence of A∞

$$
N(p_1)+\gamma^*(k)\to \pi(q)+N(p_2)
$$

γ * π N N s u t • Keep quasi-singular in denominator • Taylor expansion in numerator

Finite-volume effects

$$
\Delta(L) = \alpha_E^{ii, N\pi}(L) - \alpha_E^{ii, N\pi} = \frac{1}{3} \frac{\alpha_{em}}{M_N} \left(\frac{1}{L^3} \sum_{\substack{\beta = \frac{2\pi}{L} \neq n}} - \int \frac{d^3 \vec{p}}{(2\pi)^3} \right) \underbrace{(\overbrace{E_N + E_\pi - M_N})^3}_{\text{(E_N + E_\pi - M_N)}} \right)
$$
\n
$$
10^1 \underbrace{\overbrace{\sum_{\substack{\gamma = 1 \text{odd } N}} - 10^0}_{\text{N}} - 10^0}_{\text{N} = -1} \underbrace{\sum_{\substack{\beta = 2\pi \text{odd } N}} - 10^0}_{\text{N} = 4.6 \text{fm}} \right)
$$
\n
$$
\times
$$
 It is crucial to replace m summation by m in the interval $\alpha_E^{ii, N\pi} = \frac{1}{3} \frac{\alpha_{em}}{M} \int_{|\vec{p}| < \Lambda} \frac{d^3 \vec{p}}{(2\pi)^3} \frac{A_{\infty}}{(E + E_\pi - M)^3}$ \n
$$
10^{-1} \underbrace{\alpha_E^{ii, N\pi} = \frac{1}{3} \frac{\alpha_{em}}{M} \int_{|\vec{p}| < \Lambda} \frac{d^3 \vec{p}}{(2\pi)^3} \frac{A_{\infty}}{(E + E_\pi - M)^3}}_{\text{effects are estimated to be < 10.5 fm3}}
$$
\n2

Numerical results

 \triangleright Our results of α_E , in units of $10^{-4}fm^3$ X. Wang, Z. Zhang, et. al., arXiv:2310.01168

- Confirm large contributions of $N\pi$ states \rightarrow pion cloud picture
- Develop the methodology for lattice QCD computation of polarizabilities
- More sophisticated study to control systematic effects

Larger volume to have more momentum modes

Excited-state contamination from initial and final states

Finer lattice spacing for continuum extrapolations

Conclusion and outlook

New frontiers, new methodology and new findings!