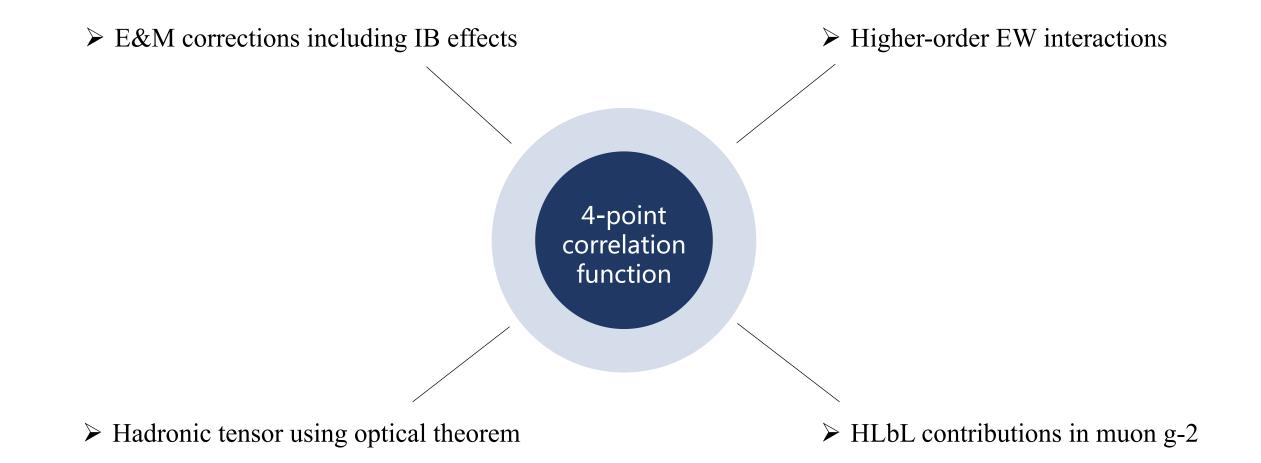


Applications of nucleon four-point correlation functions

Xu Feng

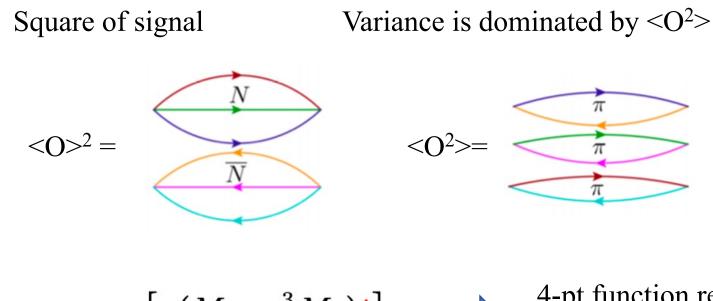
2024.07.01

4-point correlation function – frontiers in lattice QCD



Challenges in nucleon 4pt correlation functions (I)

- Nucleon system severe signal/noise (S/N) problem
 - Statistics tells us that variance is given by $\langle O^2 \rangle \langle O \rangle^2$



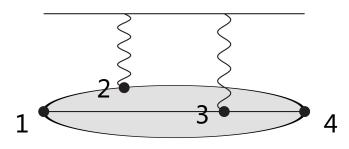
• S/N is $\exp\left[-(M_N - \frac{3}{2}M_\pi)t\right]$

4-pt function requires operators at 4 diff. time slices and thus needs large *t* separation

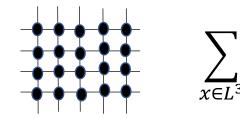
• Solution: optimized operators, variational analysis, reconstruction of ground/excited states

Challenges in nucleon 4pt correlation functions (II)

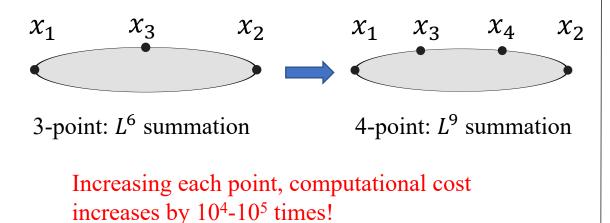
• Hadronic part from a typical 4-point function



• Perform the volume summation for each point

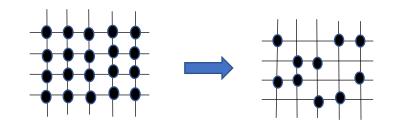


• From 3-point to 4-point function



Solution : Field sparsening method

[Y. Li, S. Xia, XF, L. Jin, C. Liu, PRD 103 (2021) 014514]
[W. Detmold, D. Murphy, et. al. PRD 104 (2021) 034502]
[See also HLbL calculation in muon g-2]



- Less summation points may lead to lower precision
- It is not the case because of high correlation in lattice data
 - 10²-10³ times less points yields similar precision
- Used for pion, proton, g_A to verify its application

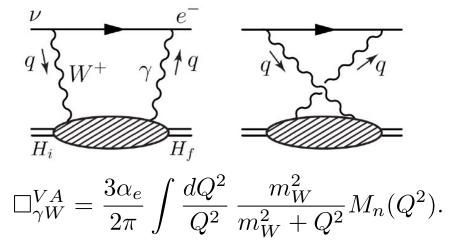
Utilize field sparsening method

• Reduce the computational cost by a factor of 10²-10³ with almost no loss of precision!

Challenges in nucleon 4pt correlation functions (III)

Short-distance divergence

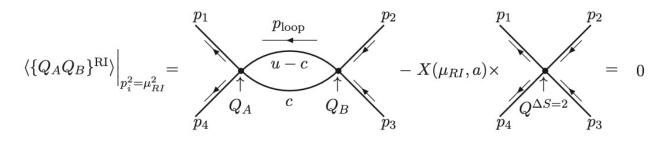
• γ W-box contribution to β decays



Low Q² - lattice QCD + Large Q² - OPE $\frac{1}{2} \int d^4x e^{-iQx} T \left[J^{em}_{\mu}(x) J^{W,A}_{\nu}(0) \right]$ $= \frac{i}{2Q^2} \left\{ C_a(Q^2) \delta_{\mu\nu} Q_{\alpha} - C_b(Q^2) \delta_{\mu\alpha} Q_{\nu} - C_c(Q^2) \delta_{\nu\alpha} Q_{\mu} \right\} J^{W,A}_{\alpha}(0)$ $+ \frac{1}{6Q^2} C_d(Q^2) \epsilon_{\mu\nu\alpha\beta} Q_{\alpha} J^{W,V}_{\beta}(0) + \cdots.$

XF, M. Gorchtein, L. Jin, et.al. PRL124 (2020) 19, 192002
J. Yoo, T. Bhattacharya, R. Gupta et.al. PRD 108 (2023) 034508
P. Ma, XF, M. Gorchtein, et.al. PRL132 (2024) 191901

• Non-trivial bilocal operator renormalization in rare kaon decays



Peng-Xiang Ma's talk Aug. 2nd, 14:15-14:35 Room: LT3

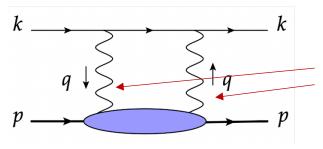
N. Christ, XF, A. Portelli, C. Sachrajda, PRD93 (2016) 114517

> Z. Bai, N. Christ, XF, et.al. PRL118 (2017) 252001

Challenges in nucleon 4pt correlation functions (IV)

> IR divergence

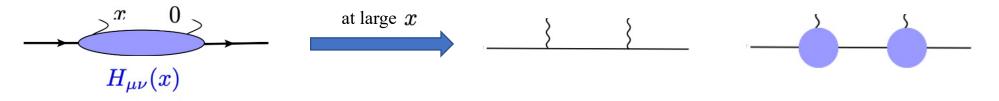
• Two-photon exchange contribution to muonic hydrogen Lamb shift



Y. Fu, XF, L. Jin, C. Lu, PRL 128 (2022) 172002

Two photon propagators, very IR divergent! (IR divergence is related with vector form factor and its derivative at q²=0)

Idea to solve IR divergence: infinite-volume reconstruction method [X. Feng, L. Jin, PRD 100 (2019) 094509]



At large x separation, $H_{\mu\nu}(x)$ is dominated by intermediate nucleon state With appropriate weight functions, we can use $H_{\mu\nu}(x)$ to reproduce charge conservation & charge radius

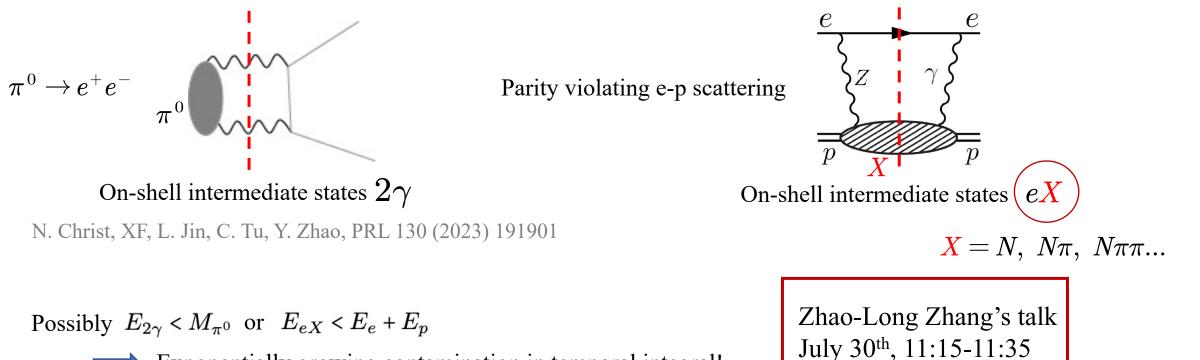
• For $N\pi$ intermediate state, although no IR divergence, convergence of Euclidean time integral can be very slow

We will see it in this talk \longrightarrow N+ $\gamma^* \rightarrow N\pi$ transition by Y. Gao

Yu-Sheng Gao's talk July 29nd, 14:35-14:55

Challenges in nucleon 4pt correlation functions (V)

Exponentially growing contamination in Euclidean time



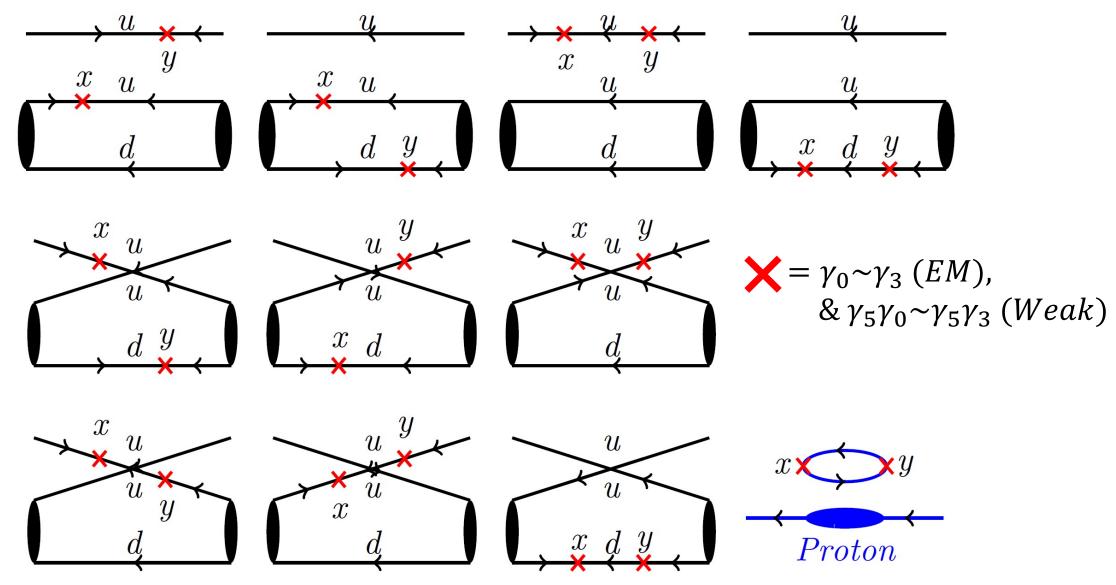
- Exponentially growing contamination in temporal integral!
- If X contains only single hadron or no hadron, a correct EW weight function in Euclidean time can be constructed
- If X contains two hadrons, finite-volume effects must be addressed properly

X. Tuo & X. Feng, arXiv:2407.16930

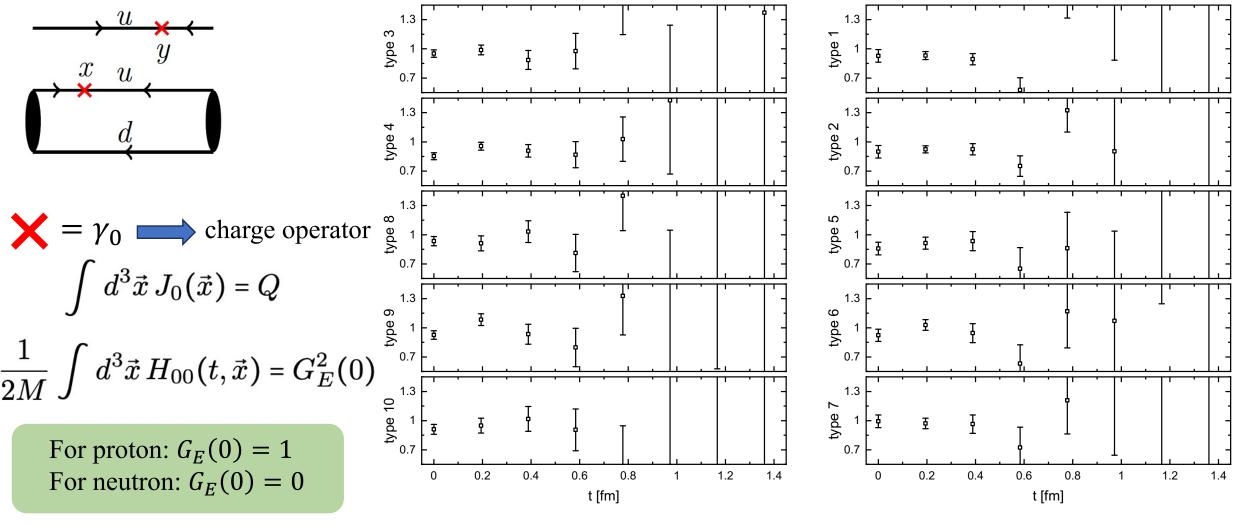
Xin-Yu Tuo's talk Aug. 2nd, 15:15-15:35 Room: LT3

Numerical calculations

> Complicated quark field contractions with two current insertions



Examination of 4-pt function: charge conservation

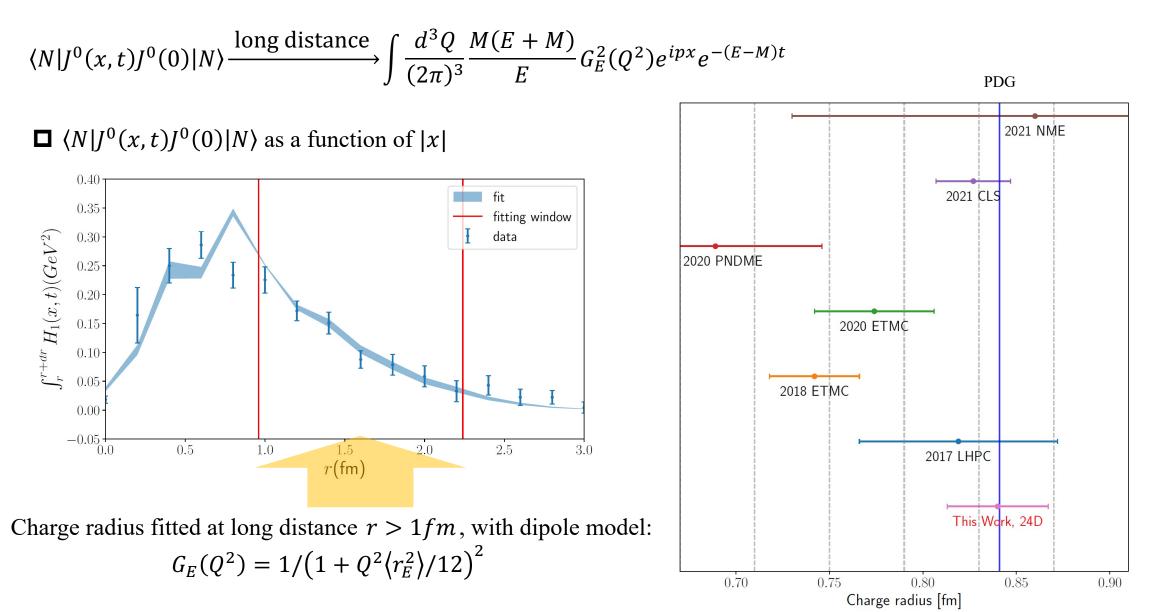


Two currents inserted in one quark line

Two currents inserted in two quark lines

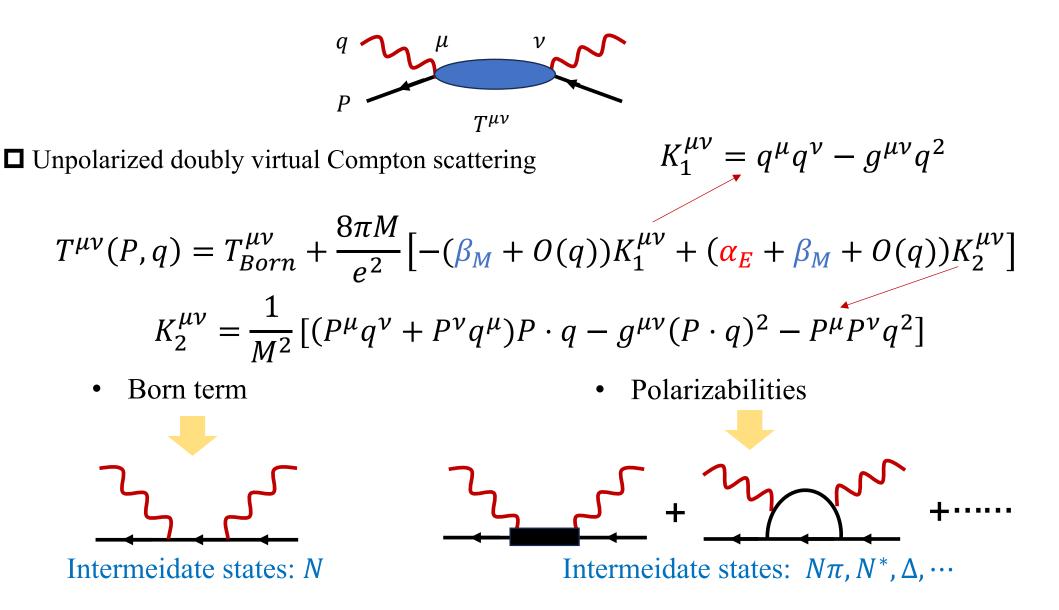
Using the charge conservation to verify the contraction code

Examination of 4-pt function: charge radius



Nucleon polarizability and Compton scattering

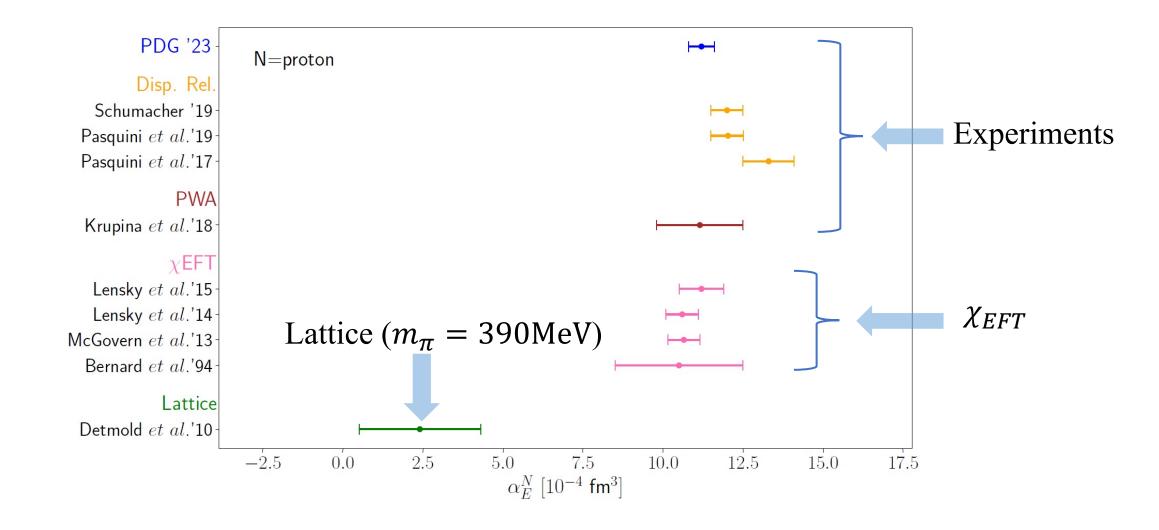
> Nucleon E&M polarizability are most central quantities relevant for Compton scattering



11

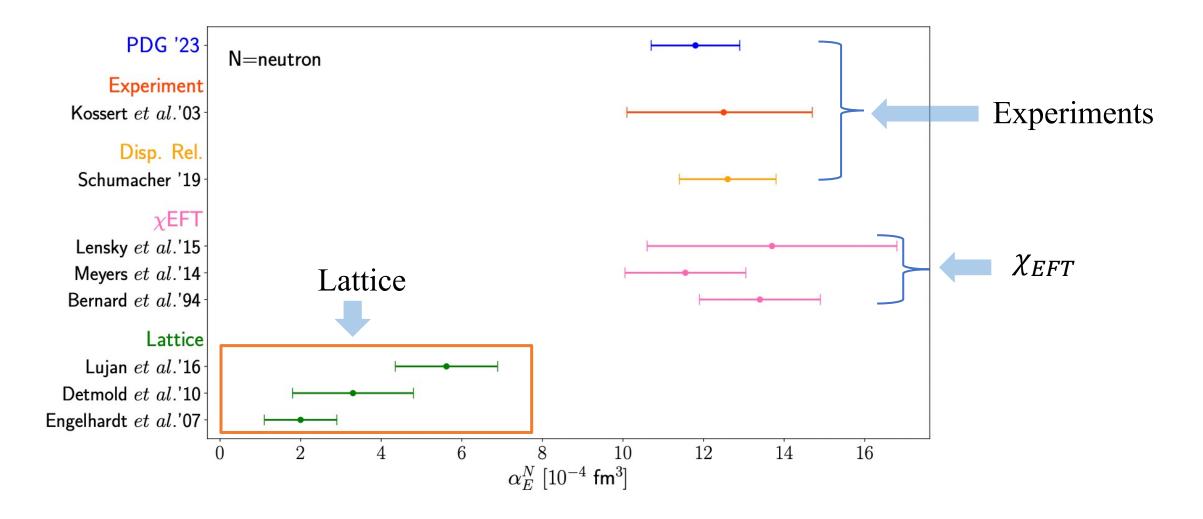
Determination of electric polarizabilities

 \succ For proton



Determination of electric polarizabilities

 \succ For neutron



Determination of electric polarizabilities

> What is the primary source of discrepancy between lattice QCD and other studies?

① Lattice calculations are performed at unphysical pion masses, ranging from 227 - 759 MeV

Unphysical quark mass effects

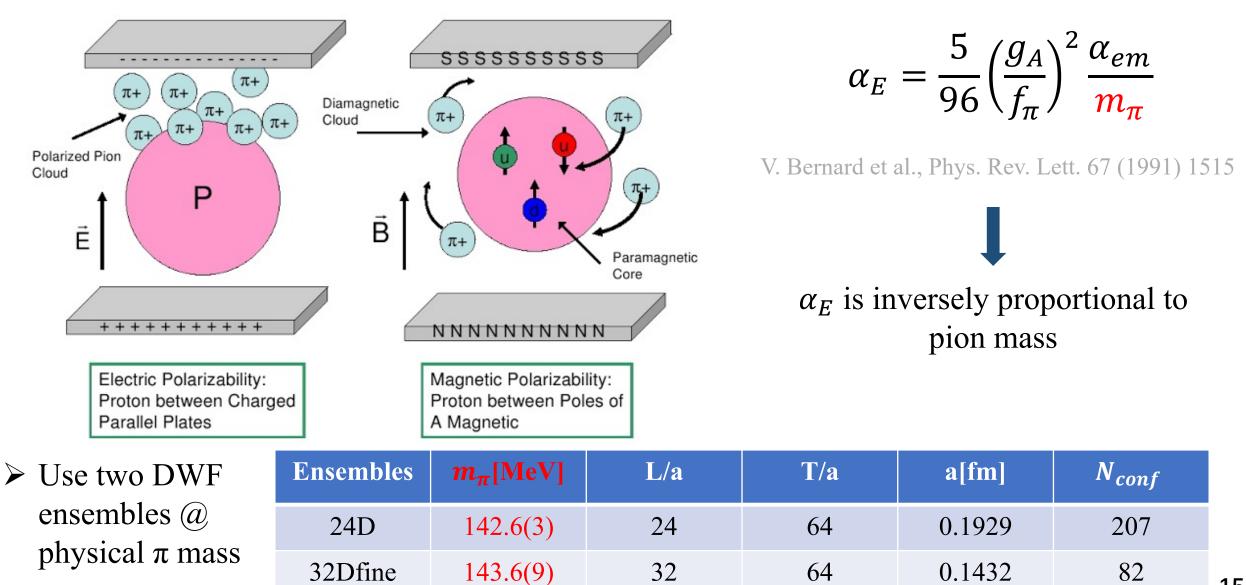
(2) Background field technique is used, which converts 4pt function to 2pt function using Feynman-Hellman theorem

Hard to explore intermediate-state contributions and control systematics

Perform calculation at physical pion mass, using 4pt function

Why physical pion mass is important

Pion cloud in nucleon polarizabilities



 \succ LO in χ_{PT} :

Electric polarizability from 4-pt function

 \blacktriangleright Derive 3 formula to calculate α_E

•
$$P = (M, 0), q = (0, \vec{\xi}):$$
 $\alpha_E = -\frac{\alpha_{em}}{12M} \int d^4x \, \vec{x}^2 \left(H^{00}(x) - H^{00}_{GS}(x) \right) + \alpha_E^r$
• $P = (M, 0), q = (\xi, 0, 0, \xi):$ $\alpha_E = \frac{\alpha_{em}}{4M} \int d^4x \, (t + x_i)^2 \left(H^{0i}(x) - H^{0i}_{GS}(x) \right) + \alpha_E^r$
• $P = (M, 0), q = (\xi, 0):$ $\alpha_E = -\frac{\alpha_{em}}{12M} \int d^4x \, t^2 H^{ii}(x) + \alpha_E^r$ Our choice

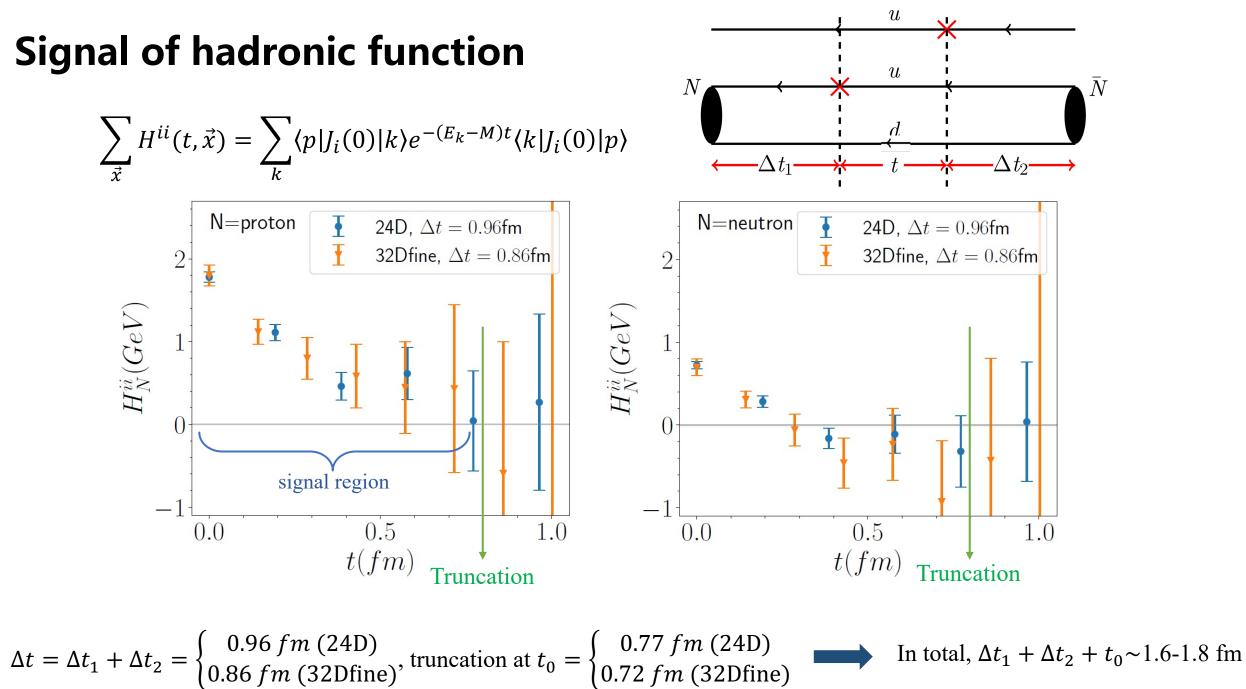
 \succ Residual term α_E^r is analytically known

 $\alpha_E^{\gamma} = \frac{\alpha_{em}}{M} \left(\frac{G_E^2(0) + \kappa^2}{4M^2} + \frac{G_E(0) \langle r_E^2 \rangle}{2} \right),$

anomalous magnetic moment & charge radius $G_E(0) = 1/0$, for proton/neutron

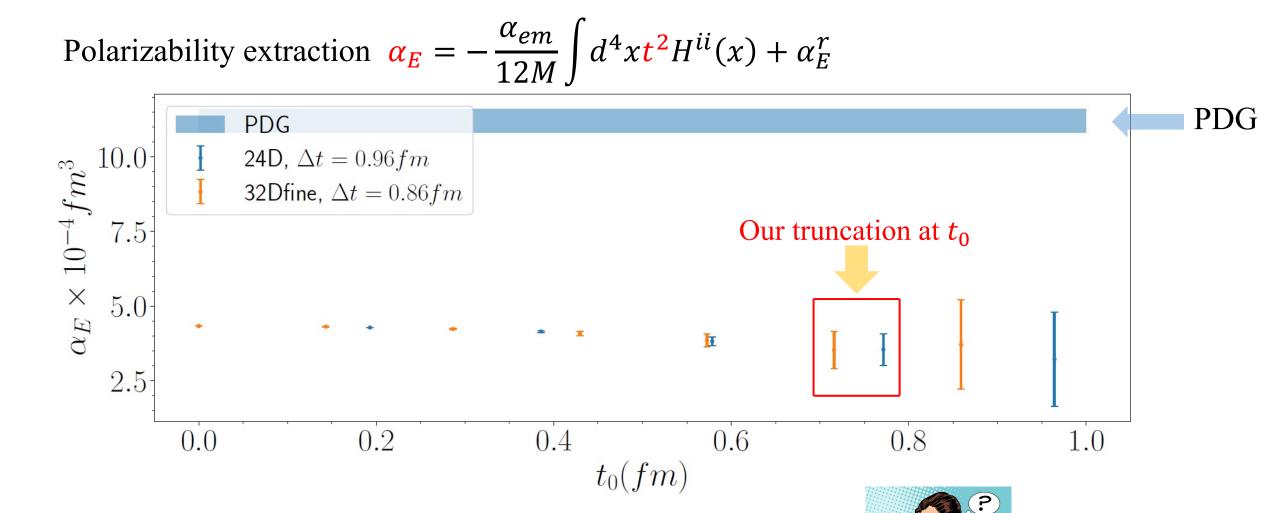
 $H^{ii}(x,t) = \langle N | J^i(x) J^i(0) | N \rangle$

 $a \mathbf{1} \mathbf{u}$





Polarizability α_E from $H_{ii}(x)$



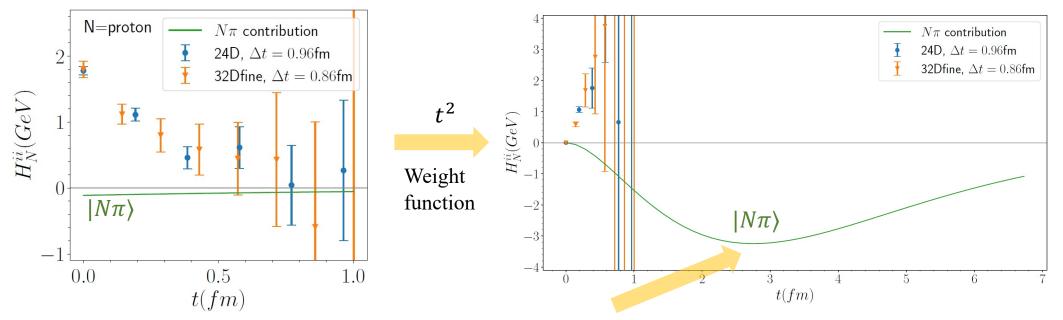
However, lattice results are significantly below the PDG value.

Need new insight to turn the decent to the magic!

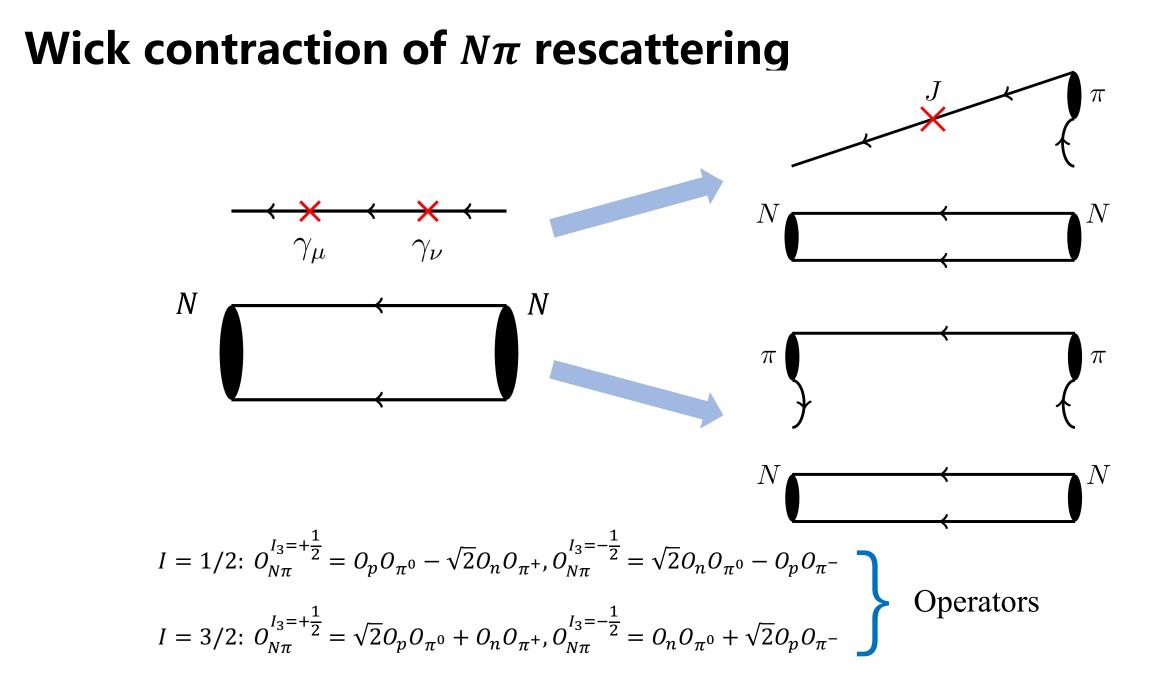
Nucleon polarizabilities and $N\pi$ scattering

Structure of hadronic function
$$\int d^4x \, t^2 H_{ii}(x,t) = \int dt \, t^2 \sum_k \langle p | J_i(0) | k \rangle e^{-(E_k - M)t} \langle k | J_i(0) | p \rangle$$
$$= 4 \sum_k \frac{\langle p | J_i(0) | k \rangle \langle k | J_i(0) | p \rangle}{(E_k - M)^3}$$

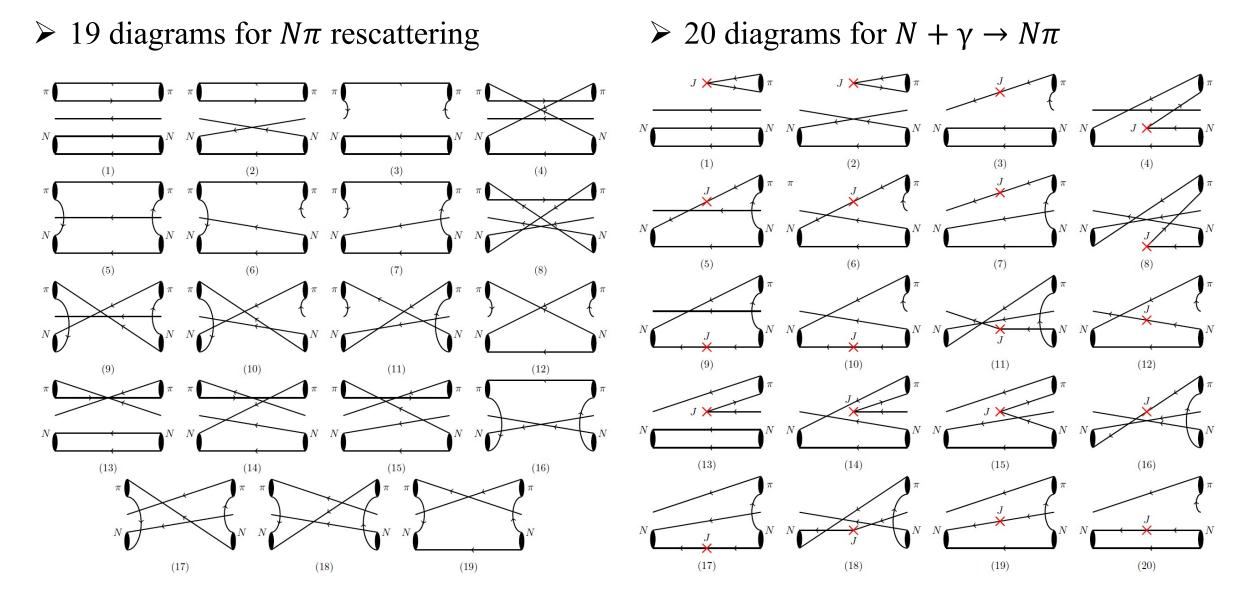
The dominant contribution is given by $|k\rangle = |N\pi\rangle$ states

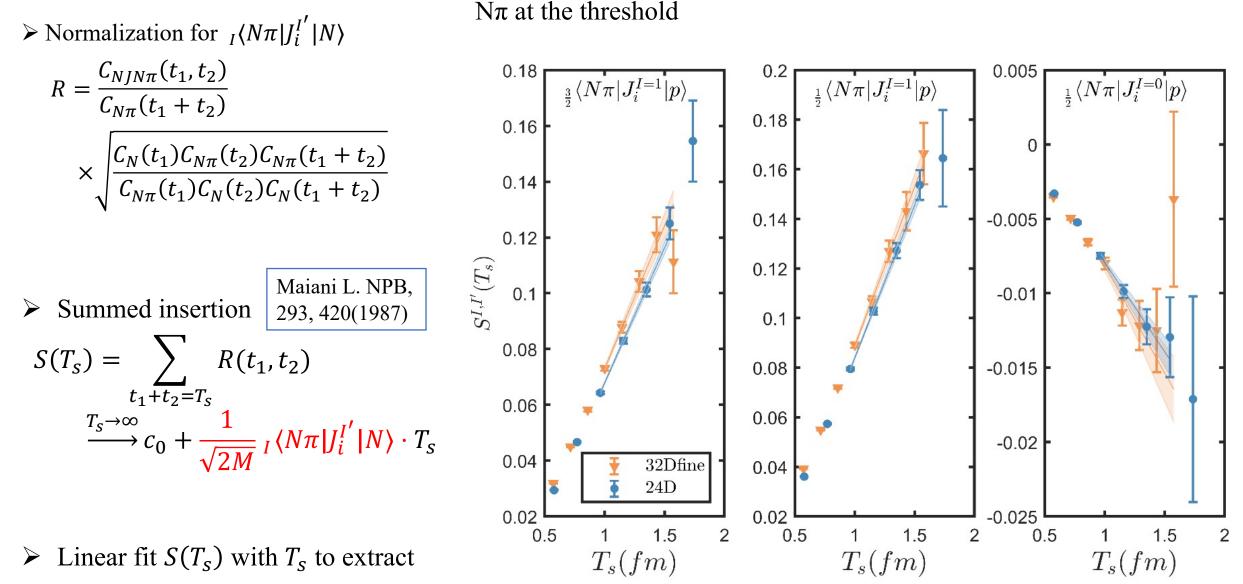


 $|N\pi\rangle$ states contribution exhibits a peak at $t = 2.8 \ fm$, far exceeding our truncation at $t_0 \approx 0.75 \ fm$ Must calculate $N\pi$ contribution directly!

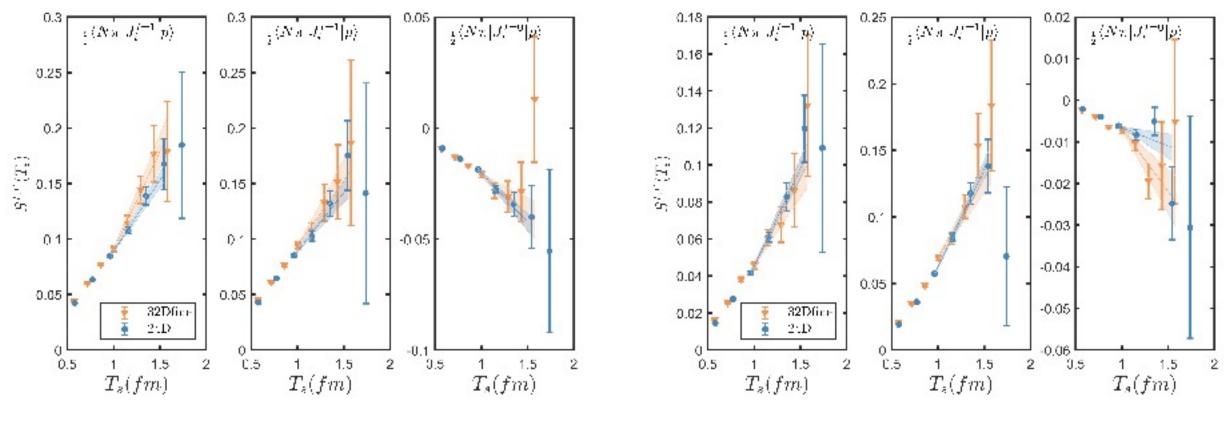


Wick contraction of $N\pi$ Rescattering





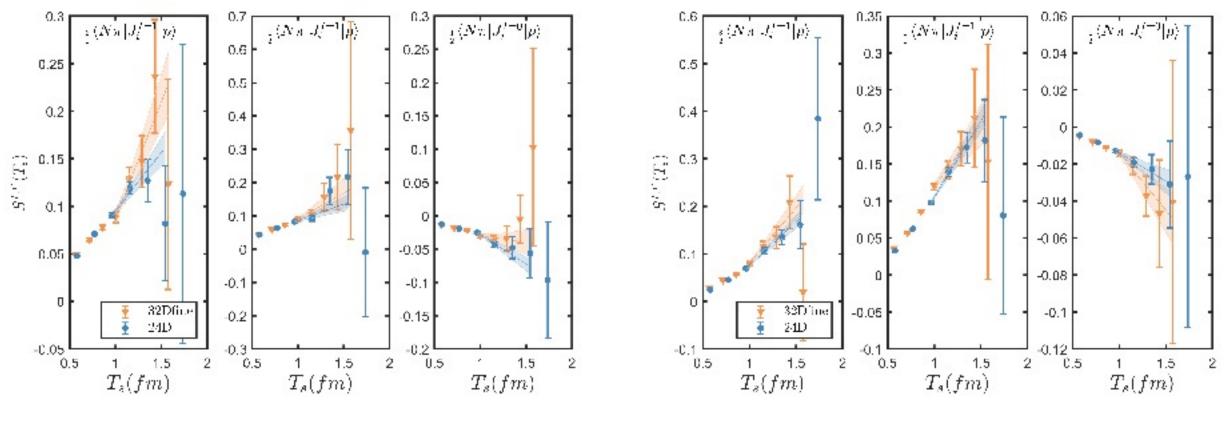
 $N\pi$ in the center of mass frame with mom. mode (100)



 G_1^- representation

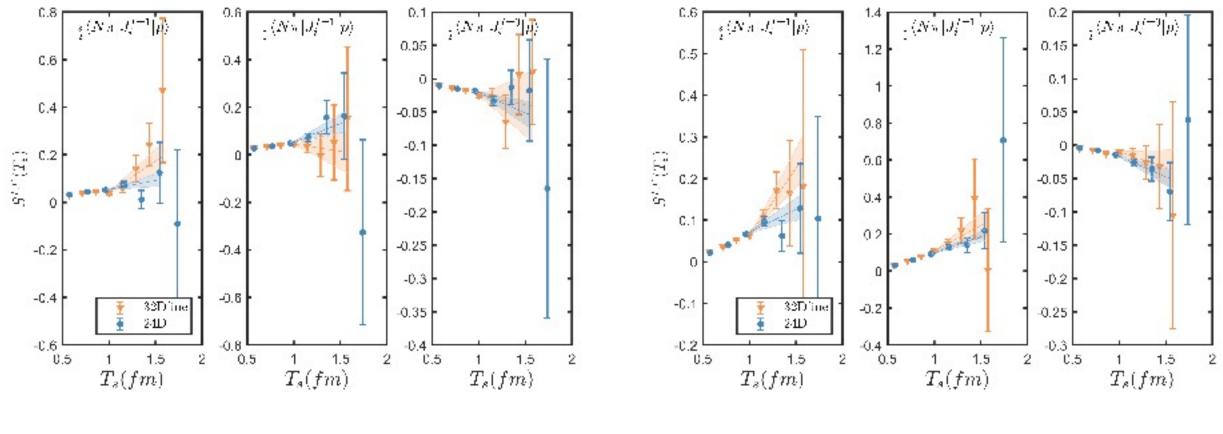
 H^- representation

 $N\pi$ in the center of mass frame with mom. mode (110)



 H^- representation

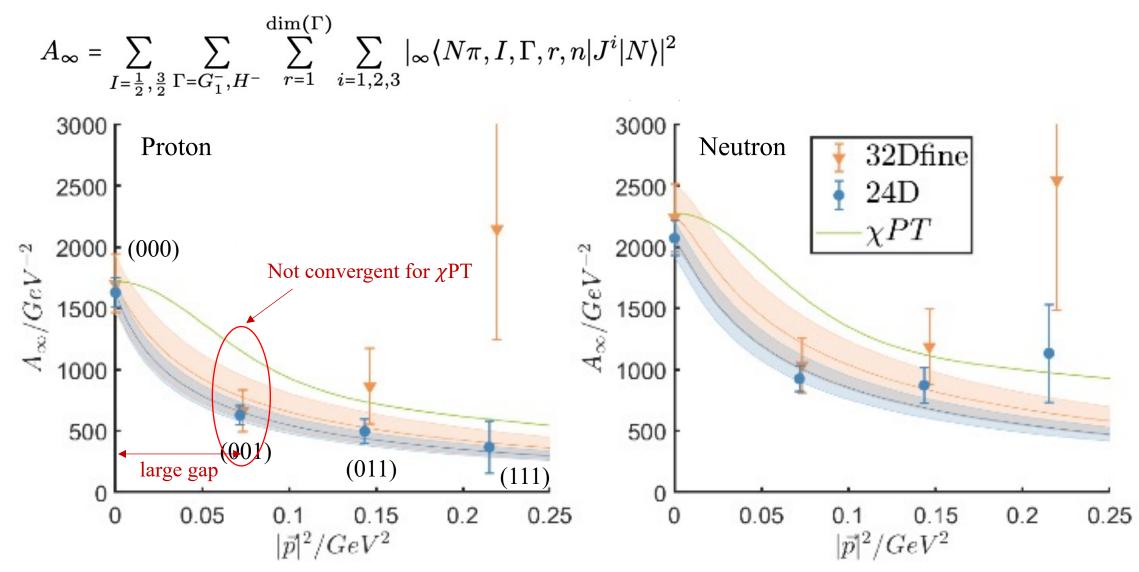
 $N\pi$ in the center of mass frame with mom. mode (111)



 G_1^- representation

 H^- representation

Matrix elements of $N\gamma \rightarrow N(p)\pi(-p)$ with 4 lowest mom modes



Limitations in the comparison between lattice QCD and χ PT:

For lattice, momentum modes are limited For χ PT, photon is very timelike & χ PT does not work well **27**

Momentum dependence of $A_{\!\infty}$

$$N(p_1) + \gamma^*(k) \to \pi(q) + N(p_2)$$

s

$$\frac{1}{s-M_N^2} = \frac{1}{E_{\pi} + E_N + M_N} \underbrace{\frac{1}{E_{\pi} + E_N - M_N}}_{K_{\pi} + E_N - M_N}$$

$$\frac{1}{u-M_N^2} = -\frac{1}{M_N - E_{\pi} + E_N} \underbrace{\frac{1}{M_N - E_{\pi} + E_N}}_{K_{\pi} + E_{\pi} + E_N}$$

$$A_{\infty} = \frac{\sum_s a_s(\vec{p}^2)^s}{(2E)(2E_{\pi})(E_N + E_{\pi} - M_N)^2}$$

$$\cdot \text{ Keep quasi-singular in denominator}}$$

$$\cdot \text{ Taylor expansion in numerator}$$

Finite-volume effects

$$\Delta(L) = \alpha_E^{ii,N\pi}(L) - \alpha_E^{ii,N\pi} = \frac{1}{3} \frac{\alpha_{em}}{M_N} \left(\frac{1}{L^3} \sum_{\vec{p} = \frac{2\pi}{L} \vec{m}} - \int \frac{d^3 \vec{p}}{(2\pi)^3} \right) \frac{A_{\infty}}{(E_N + E_\pi - M_N)^3}$$

$$= 10^4 \qquad N = \text{proton}$$

$$N = \text{neutron}$$

$$= -\cdot L = 4.6 \text{fm}$$

$$= 10^4 \qquad M_N = 10^4 \qquad M_N = 10^4 \text{fm}$$

$$= 10^4 \qquad M_N = 10^$$

Numerical results

> Our results of α_E , in units of $10^{-4} fm^3$ X. Wang, Z. Zhang, et. al., arXiv:2310.01168

		24D	32Dfine	PDG
Proton	$lpha_E^{N\pi}$	5.65(53)	6.5(1.2)	
	$lpha_E$	10.0(1.3)	9.3(2.2)	11.2(4)
Neutron	$lpha_E^{N\pi}$	8.33(75)	9.8(1.5)	
	$lpha_E$	9.7(1.4)	10.1(2.4)	11.8(1.1)

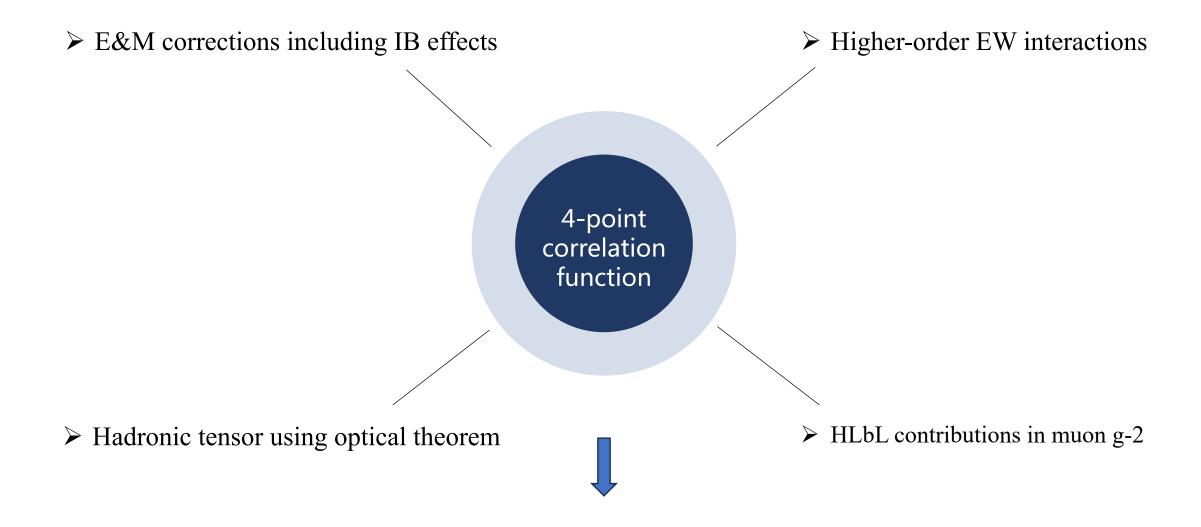
- Confirm large contributions of $N\pi$ states \rightarrow pion cloud picture
- Develop the methodology for lattice QCD computation of polarizabilities
- More sophisticated study to control systematic effects •

Larger volume to have more momentum modes

Excited-state contamination from initial and final states

Finer lattice spacing for continuum extrapolations

Conclusion and outlook



New frontiers, new methodology and new findings!