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Motivation

Neutron-rich nuclei are increasingly sensitive to three-nucleon forces. To better
understand properties of these nuclei (shell structure, spectroscopy, dripline, etc)
we need to understand the three nucleon interaction.

Neutron star properties are also constrained by three-nucleon forces.

A theoretical understanding of the three-nucleon interaction also provides insight
into the many-body problem in nuclear matter.

The three-neutron case provides a starting point for understanding more general
three-particle interactions.
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The three-neutron quantization condition
A quantization condition (QC) relates the finite-volume spectrum to infinite-volume
scattering amplitudes.

QC’s are derived by isolating the part of the (finite-volume) correlator which scale
as powers of the volume ~(1/L)".

A two-particle QC takes the form: det [1 + KyF5] =0

For three particles, we need to also quantify the three-particle interactions and
which two particles enter the two-particle interactions — G, Ky 3

To complete the QC, integral equations are used to determine infinite volume
amplitudes from K, and Ky ;.



3/16

The three-neutron quantization condition [\
k

_ — a’ a
st [~ Mgally| =4 .ﬁcn.
- 1 1 U
Fs=—+4+F My F , MQL— 1

9 1-M2 .G
a

. ,

@Ig

b

_e '
P

Kafz = 0 = | det [F;l] =}




4/16

Vector Space

The space in which the QC matrices act is defined by spectator momentum £,
dimer orbital angular momentum [ and azimuthal component 7, and the spin of
each neutron”.

For a particular £ and [,,,,, = 1, this leads to 1 x 8 + 3 x 8 = 32 dimensional
matrices.

Antisymmetry of the 3-neutron wavefunction requires that if [ is even, the total
dimer spin, s, must be as well. This gives 1 x1x2 + 3 x 3 x 2 =20 dimensional
matrices.

——> QC matrix is (# kinematically allowed spectator momenta) x 20 dimensional.

*frame dependent



Irrep Projection

The QC matrices are all invariant
under the action of the little group
determined by total momentum of
the 3 neutrons, P.

Schur’'s Lemma ——>block
diagonalization in irreps of little
group ——>solutions of QC live in
definite irreps.

Projection onto a particular irrep
reduces dimensionality and speeds
up calculation of eigenvalues.
Additionally helps distinguish
different solutions.
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.9
P:%(0,0,0) — O

P = 2%(o,o, 1) = Cy
Name |Dimension|Fermionic
Al 1 False
A2 1 False
B1 d False
B2 1 False
Eg 2 False
Gl 2 True
G2 2 True

Name|Dimension|Fermionic
Alg 1 False
A2g 1 False
Eg 2 False
Tlg 3 False
T2g 3 False
Glg 2 True
G2g 2 True
Hg 4 True
Alu 1 False
A2u i | False
Eu 2 False
Tlu 3 False
T2u 3 False
Glu 2 True
G2u 2 True
Hu 4 True
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K5 parameterization

In the basis of total dimer angular momentum j with /.. = 1we have j = 0,1, 2.

For j = 0, we have either | = s = Qor [ = s = 1 which do not mix due to parity
and so each can be expressed in terms of a scattering phase shift.

Likewise, for j = 1, we have [ = s = 1which does not mix with any other
channels.

For j =2,both [ = s = 1and [ = 3, s = 1are allowed and mix in general but for
this analysis we assume that the | = 3 contribution is small and treat j =2,/ = s -as
a single channel.

We fit each of these four channels to “experimental” scattering data to determine K,
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Solving the QC

Pick a frame and identify free levels
Construct the QC matrix
Project onto an irrep in little group

|ldentify energies where eigenvalues of the QC matrix are zero
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Solving the QC

Pick a frame and identify free levels

P | (ki ko], |ks]) | d E irreps
(0,0,1) (0,0,1) 2 | 3.04819 Gy

(0,0,1) (0:id.2) 32 | 3.14244 | 8G; @ 8G>
(0,0,1) (1,1,1) 18 | 3.14456 | 5G1 @ 4G,
(0,0,1) (0,1,4) 8 3.2292 3G1 @ Go
(0,0,1) (0,2,3) 32 | 3.23271 | 8G1 @ 8G-
(0,0,1) (.13} 32 | 3.23483 | 8G1 ® 8G>

myL =20, m, = .15mpy



Solving the QC
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ks|) | d E irreps

24 | 3.09637 Gi, @ Hy ® 2G1,, ® Gz, © 3H,

48 | 3.18851 Glg D ng D 2Hg @ 3G, ® 3G9, ® 6H,

96 | 3.19063 | 4G1, @ 4G4, ® 8H, @ 4G1, ® 4Gy, ® 8H,

32 | 327692 | G1y® Gog ® H, ® 2G1, ® 2G2, ® 4H,

12 | 3.27738 Gig D, &G @Il

myL =20, m, = .15my
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QC eigenvalue
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Nonphysical Solutions
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scale factor
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Conclusion
We have produced the finite-energy spectra for the case of two-particle
interactions only, separated by irrep.

Future work includes investigating the spectral dependence on K, and extending
the QC to include K.

In the end: use lattice data to fix parameterization of K, and K, ;and extract
infinite volume amplitudes.



