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Motivation

Neutron-rich nuclei are increasingly sensitive to three-nucleon forces. To better 
understand properties of these nuclei (shell structure, spectroscopy, dripline, etc) 
we need to understand the three nucleon interaction. 

Neutron star properties are also constrained by three-nucleon forces.

A theoretical understanding of the three-nucleon interaction also provides insight 
into the many-body problem in nuclear matter.

The three-neutron case provides a starting point for understanding more general 
three-particle interactions.
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The three-neutron quantization condition

A quantization condition (QC) relates the finite-volume spectrum to infinite-volume 
scattering amplitudes.

QC’s are derived by isolating the part of the (finite-volume) correlator which scale 
as powers of the volume ~ .

A two-particle QC takes the form:                             .

For three particles, we need to also quantify the three-particle interactions and 
which two particles enter the two-particle interactions 

To complete the QC, integral equations are used to determine infinite volume 
amplitudes from      and    .
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The three-neutron quantization condition
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Vector Space

The space in which the QC matrices act is defined by spectator momentum   , 
dimer orbital angular momentum   and azimuthal component     , and the spin of 
each neutron*.

For a particular    and             , this leads to 1 x 8 + 3 x 8 = 32 dimensional 
matrices.

Antisymmetry of the 3-neutron wavefunction requires that if   is even, the total 
dimer spin, s, must be as well. This gives 1 x 1 x 2 + 3 x 3 x 2 = 20 dimensional 
matrices.

         QC matrix is (# kinematically allowed spectator momenta) x 20 dimensional.

*frame dependent
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Irrep Projection

The QC matrices are all invariant 
under the action of the little group 
determined by total momentum of 
the 3 neutrons,   .

Schur’s Lemma           block 
diagonalization in irreps of little 
group          solutions of QC live in 
definite irreps.

Projection onto a particular irrep 
reduces dimensionality and speeds 
up calculation of eigenvalues. 
Additionally helps distinguish 
different solutions.
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      parameterization

In the basis of total dimer angular momentum   with              we have               .

For         , we have either                  or                   which do not mix due to parity 
and so each can be expressed in terms of a scattering phase shift.

Likewise, for         , we have                  which does not mix with any other 
channels.

For         , both                   and                  are allowed and mix in general but for 
this analysis we assume that the          contribution is small and treat                   as 
a single channel.

We fit each of these four channels to “experimental” scattering data to determine         
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Solving the QC

Pick a frame and identify free levels

Construct the QC matrix

Project onto an irrep in little group

Identify energies where eigenvalues of the QC matrix are zero
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Solving the QC
Pick a frame and identify free levels
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Solving the QC
Pick a frame and identify free levels
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Nonphysical Solutions

Nonphysical solutions can 
arise from features of     . 

We can trace them by 
scaling down the      
interactions.

Introducing a cutoff in        
for negative CM momentum 
removes most nonphysical 
solutions.  
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Conclusion

We have produced the finite-energy spectra for the case of two-particle 
interactions only, separated by irrep.

Future work includes investigating the spectral dependence on      and extending 
the QC to include         .

In the end: use lattice data to fix parameterization of      and        and extract 
infinite volume amplitudes.
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