Proton and neutron electromagnetic form factors using $N_f=2+1+1$ twisted-mass fermions with physical values of the quark masses

Constantia Alexandrou, Simone Bacchio, Giannis Koutsou, Gregoris Spanoudes, Bhavna Prasad,

Interested in theoretically probing the structure of nucleons using lattice QCD.

- Interested in theoretically probing the structure of nucleons using lattice QCD.
- We take into account disconnected contribution and take the continuum limit at physical point.

- Interested in theoretically probing the structure of nucleons using lattice QCD.
- We take into account disconnected contribution and take the continuum limit at physical point.
- The nucleon matrix element of for the electromagnetic current is given by:

$$\langle N(p',s')|j_{\mu}|N(p,s)\rangle = \sqrt{\frac{m_{N}^{2}}{E_{N}(\vec{p'})E_{N}(\vec{p})}}\bar{u}_{N}(p',s')$$
$$\left[\gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{N}}F_{2}(q^{2})\right]u_{N}(p,s)$$

- Interested in theoretically probing the structure of nucleons using lattice QCD.
- We take into account disconnected contribution and take the continuum limit at physical point.
- The nucleon matrix element of for the electromagnetic current is given by:

$$\langle N(p',s')|j_{\mu}|N(p,s)\rangle = \sqrt{\frac{m_N^2}{E_N(\vec{p'})E_N(\vec{p})}}\bar{u}_N(p',s')$$
$$\left[\gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_N}F_2(q^2)\right]u_N(p,s)$$
$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_N^2}F_2(q^2)$$
$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

On lattice, the nucleon matrix element is accessed using two point and three point correlation functions.

- On lattice, the nucleon matrix element is accessed using two point and three point correlation functions.
- > The two point function is given by:

$$\mathcal{C}(\Gamma_0, \vec{p}; t_s, t_0) = \sum_{\vec{x}_s} e^{-i(\vec{x}_s - \vec{x}_0) \cdot \vec{p}} \times \operatorname{Tr} \left[\Gamma_0 \langle \chi_N(t_s, \vec{x}_s) \bar{\chi}_N(t_0, \vec{x}_0) \rangle \right]$$

- On lattice, the nucleon matrix element is accessed using two point and three point correlation functions.
- > The two point function is given by:

$$\mathcal{C}(\Gamma_0, \vec{p}; t_s, t_0) = \sum_{\vec{x}_s} e^{-i(\vec{x}_s - \vec{x}_0) \cdot \vec{p}} \times \operatorname{Tr} \left[\Gamma_0 \langle \chi_N(t_s, \vec{x}_s) \bar{\chi}_N(t_0, \vec{x}_0) \rangle \right]$$

> The three point function is given by: $\mathcal{C}_{\mu}(\Gamma_{\nu}, \vec{q}, \vec{p}'; t_{s}, t_{\text{ins}}, t_{0}) = \sum_{\vec{x}_{\text{ins}}, \vec{x}_{s}} e^{i(\vec{x}_{\text{ins}} - \vec{x}_{0}) \cdot \vec{q}} e^{-i(\vec{x}_{s} - \vec{x}_{0}) \cdot \vec{p}'} \times \operatorname{Tr} \left[\Gamma_{\nu} \langle \chi_{N}(t_{s}, \vec{x}_{s}) j_{\mu}(t_{\text{ins}}, \vec{x}_{\text{ins}}) \bar{\chi}_{N}(t_{0}, \vec{x}_{0}) \rangle \right].$

Nucleon matrix element on lattice

We take the two-point and three-point functions to momentum space.

Nucleon matrix element on lattice

- > We take the two-point and three-point functions to momentum space.
- We construct the following ratio to get rid of exponentials and overlaps.

$$j_{\mu}(\vec{x}_{\text{ins}}, t_{\text{ins}})$$

$$(\vec{x}_{s}, t_{s})$$

$$(\vec{x}_{s}, t_{s})$$

$$(\vec{x}_{s}, t_{s})$$

$$(\vec{x}_{s}, t_{s})$$

$$(\vec{x}_{0}, t_{0})$$

$$\Pi_{\mu}(\Gamma_{\nu}, \vec{p'}, \vec{p}; t_{s}, t_{ins}) = \frac{C_{\mu}(\Gamma_{\nu}, \vec{p'}, \vec{p}; t_{s}, t_{ins})}{C(\Gamma_{0}, \vec{p'}; t_{s})} \times \sqrt{\frac{C(\Gamma_{0}, \vec{p}; t_{s} - t_{ins})C(\Gamma_{0}, \vec{p'}; t_{ins})C(\Gamma_{0}, \vec{p'}; t_{s})}{C(\Gamma_{0}, \vec{p'}; t_{s} - t_{ins})C(\Gamma_{0}, \vec{p}; t_{ins})C(\Gamma_{0}, \vec{p}; t_{s})}}$$

> We use clover improved, twisted-mass fermions.

- > We use clover improved, twisted-mass fermions (O(a) improved).
- > We use three ensembles with $N_f=2+1+1$ from ETMC.

Ensemble	$(\frac{L}{a})^3 \times (\frac{T}{a})$	a [fm]	m_{π} [MeV]	$m_{\pi}L$
cB211.072.64	$64^3 \times 128$	0.07957(13)	140.2(2)	3.62
cC211.060.80	$80^{3} \times 160$	0.06821(13)	136.7(2)	3.78
cD211.054.96	$96^3 \times 192$	0.05692(12)	140.8(2)	3.90

➢ For connected contribution, the sink momenta is set to 0.

- ➢ For connected contribution, the sink momenta is set to 0.
- > All **Γ** for multiple t_s values are computed.

- For connected contribution, the sink momenta is set to 0.
- > All **Γ** for multiple t_s values are computed.
- The number of source positions are increased for increasing t_s, to counter increase in noise.

- For connected contribution, the sink momenta is set to 0.
- > All **Γ** for multiple t_s values are computed.
- The number of source positions are increased for increasing t_s, to counter increase in noise.
- Lattice conserved current used, no renormalization needed.

- For connected contribution, the sink momenta is set to 0.
- > All **Γ** for multiple t_s values are computed.
- The number of source positions are increased for increasing t_s, to counter increase in noise.
- Lattice conserved current used, no renormalization needed.

Disconnected contribution is obtained from correlating high statistics two-point function with disconnected quark loop. Alexandrou et. al [1812.10311]

- For connected contribution, the sink momenta is set to 0.
- > All **Γ** for multiple t_s values are computed.
- The number of source positions are increased for increasing t_s, to counter increase in noise.
- Lattice conserved current used, no renormalization needed.

- Disconnected contribution is obtained from correlating high statistics two-point function with disconnected quark loop. Alexandrou et. al [1812.10311]
- Disconnected loop computed using deflation, hierarchical probing, dilution.

- For connected contribution, the sink momenta is set to 0.
- > All **Γ** for multiple t_s values are computed.
- The number of source positions are increased for increasing t_s, to counter increase in noise.
- Lattice conserved current used, no renormalization needed.

- Disconnected contribution is obtained from correlating high statistics two-point function with disconnected quark loop. Alexandrou et. al [1812.10311]
- Disconnected loop computed using deflation, hierarchical probing, dilution.
- Local current used, renormalization required.

Statistics

> Statistics for connected three point functions.

 n_{src}

						_			
cB	cB211.072.64		c(cC211.060.80			cD2	211.054	.96
r	$n_{\rm conf} = 75$	0		$n_{\rm conf} = 40$	00		r	$n_{\rm conf} = 500$	0
t_s/a	t_s [fm]	n_{src}	t_s/a	t_s [fm]	n_{src}	-	t_s/a	t_s [fm]	n_s
8	0.64	1	6	0.41	1	_	8	0.46	
10	0.80	2	8	0.55	2		10	0.57	
12	0.96	5	10	0.69	4		12	0.68	
14	1.12	10	12	0.82	10		14	0.80	
16	1.28	32	14	0.96	22		16	0.91	_
18	1.44	112	16	1.10	48		18	1.03	•
20	1.60	128	18	1.24	45		20	1.14	(
			20	1.37	116		22	1.25	-
			22	1.51	246		24	1.37	
						=	26	1.48	(

Statistics

Statistics for connected three point functions.

 n_{src}

 $2 \\ 4 \\ 10 \\ 22 \\ 48 \\ 45 \\ 116 \\ 246$

 Statistics for disconnected three point functions.

cB211.072.64			cC211.060.80			
1	$n_{\rm conf} = 75$	0		r	$n_{ m conf}=40$	0
t_s/a	t_s [fm]	n_{src}	-	t_s/a	t_s [fm]	n_s
8	0.64	1		6	0.41	
10	0.80	2		8	0.55	
12	0.96	5		10	0.69	
14	1.12	10		12	0.82	
16	1.28	32		14	0.96	
18	1.44	112		16	1.10	
20	1.60	128		18	1.24	
				20	1.37	1
				22	1.51	2

cD:	cD211.054.96				
1	$n_{ m conf}{=}50$	0			
t_s/a	t_s [fm]	n_{src}			
8	0.46	1			
10	0.57	2			
12	0.68	4			
14	0.80	8			
16	0.91	16			
18	1.03	32			
20	1.14	64			
22	1.25	16			
24	1.37	32			
26	1.48	64			

Ensemble	$n_{\rm conf}$	n_{ev}	$n_{ m src}$
cB211.072.64	750	200	477
cC211.060.80	400	450	650
cD211.054.96	500	-	480

> We are interested in the ground state matrix element of nucleons.

- > We are interested in the ground state matrix element of nucleons.
- ➢ For connected, we do a multi-state fit using the following expressions of two point (spectral decomposition) and three point functions to reach ground state.

$$C(\Gamma_0, \vec{p}, t_s) = \sum_n c_n(\vec{p}) e^{-E_n(\vec{p})t_s}$$

- > We are interested in the ground state matrix element of nucleons.
- ➢ For connected, we do a multi-state fit using the following expressions of two point (spectral decomposition) and three point functions to reach ground state.

$$C(\Gamma_0, \vec{p}, t_s) = \sum_n c_n(\vec{p}) e^{-E_n(\vec{p})t_s}$$

$$C_{\mu}(\Gamma_{k}, \vec{q}, t_{s}, t_{\text{ins}}) = \sum_{i,j} A_{\mu}^{ij}(\Gamma_{k}, \vec{q}) e^{-E_{i}(\vec{p})(t_{s} - t_{\text{ins}}) - E_{j}(\vec{q})t_{\text{ins}}}$$

- > We are interested in the ground state matrix element of nucleons.
- > For connected, we do a multi-state fit using the following expressions of two point (spectral decomposition) and three point functions to reach ground state.

$$C(\Gamma_0, \vec{p}, t_s) = \sum_n c_n(\vec{p}) e^{-E_n(\vec{p})t_s}$$

$$C_{\mu}(\Gamma_{k}, \vec{q}, t_{s}, t_{\text{ins}}) = \sum_{i,j} A_{\mu}^{ij}(\Gamma_{k}, \vec{q}) e^{-E_{i}(\vec{p})(t_{s} - t_{\text{ins}}) - E_{j}(\vec{q})t_{\text{ins}}}$$

$$\Pi_{\mu}(\Gamma_{\nu};\vec{q}) = \frac{A^{0,0}_{\mu}(\Gamma_{\nu},\vec{q})}{\sqrt{c_0(\vec{0})c_0(\vec{q})}}$$

Multi-state fits to correlators

> We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.

- > We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.
- > Keeping the isoscalar and isovector case separate, we fit together, the three point functions contributing to G_E and G_M together with the two point function.

- > We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.
- > Keeping the isoscalar and isovector case separate, we fit together, the three point functions contributing to G_E and G_M together with the two point function.
- > The ground state energy, $E_0(\vec{0})$, and the first excited state energy, $E_1(\vec{0})$, is shared between two-point and three-point functions.

- > We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.
- > Keeping the isoscalar and isovector case separate, we fit together, the three point functions contributing to G_E and G_M together with the two point function.
- > The ground state energy, $E_0(\vec{0})$, and the first excited state energy, $E_1(\vec{0})$, is shared between two-point and three-point functions.
- > The energy at finite momenta is determined using dispersion relation.

$$E_N(\vec{p}) = \sqrt{m_N^2 + \vec{p}^2}$$

- > We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.
- > Keeping the isoscalar and isovector case separate, we fit together, the three point functions contributing to G_E and G_M together with the two point function.
- > The ground state energy, $E_0(\vec{0})$, and the first excited state energy, $E_1(\vec{0})$, is shared between two-point and three-point functions.
- > The energy at finite momenta is determined using dispersion relation.

$$E_N(\vec{p}) = \sqrt{m_N^2 + \vec{p}^2}$$

> The second excited state energy only appears in the two point function.

> The is done for each Q^2 value.

- > The is done for each Q^2 value.
- \succ We vary the ranges for:
 - > Two-point function $t_{s,min}$

- > The is done for each Q^2 value.
- \succ We vary the ranges for:
 - > Two-point function $t_{s,min}$
 - ▷ Ratio $t_{s,min}$ and $t_{ins,min}$

- > The is done for each Q^2 value.
- \succ We vary the ranges for:
 - > Two-point function $t_{s,min}$
 - > Ratio $t_{s,min}$ and $t_{ins,min}$
- Results from all fits are then model averaged [2309.05774].

- > The is done for each Q^2 value.
- \succ We vary the ranges for:
 - > Two-point function $t_{s,min}$
 - ▷ Ratio $t_{s,min}$ and $t_{ins,min}$
- Results from all fits are then model averaged.
- > On right is an example of isovector G_E and G_M for the cC211.060.80 ensemble for first non-zero Q^2 .

Isovector form factors

> The procedure is repeated for all Q^2 values for both electric and magnetic case resulting in the following.

Isovector form factors

> The procedure is repeated for all Q^2 values for both electric and magnetic case resulting in the following.

Isovector form factors

> The procedure is repeated for all Q^2 values for both electric and magnetic case resulting in the following.

Isoscalar form factors

➤ Similarly the following is obtained for isoscalar case.

Isoscalar form factors

➤ Similarly the following is obtained for isoscalar case.

Isoscalar form factors

➤ Similarly the following is obtained for isoscalar case.

٠

For the isovector contribution, the disconnected contribution cancels (u,d degeneracy in isospin limit).

- > For the isovector contribution, the disconnected contribution cancels (u,d degeneracy).
- > The following is the result only for isoscalar combination (Plateau fits).

- > For the isovector contribution, the disconnected contribution cancels (u,d degeneracy).
- > The following is the result only for isoscalar combination (Plateau fits).

> For the isovector contribution, the disconnected contribution cancels (u,d degeneracy).

> The following is the result only for isoscalar combination (Plateau fits).

$$\Box > G^{p}(Q^{2}) = \frac{1}{2} \left[\frac{G^{u+d}(Q^{2})}{3} + G^{u-d}(Q^{2}) \right]$$

$$\Box > G^{p}(Q^{2}) = \frac{1}{2} \left[\frac{G^{u+d}(Q^{2})}{3} + G^{u-d}(Q^{2}) \right]$$

$$\Box > G^{p}(Q^{2}) = \frac{1}{2} \left[\frac{G^{u+d}(Q^{2})}{3} + G^{u-d}(Q^{2}) \right]$$

$$\square \land G^{n}(Q^{2}) = \frac{1}{2} \left[\frac{G^{u+d}(Q^{2})}{3} - G^{u-d}(Q^{2}) \right]$$

$$\Box > G^{n}(Q^{2}) = \frac{1}{2} \left[\frac{G^{u+d}(Q^{2})}{3} - G^{u-d}(Q^{2}) \right]$$

$$\square > G^n(Q^2) = \frac{1}{2} \left[\frac{G^{u+d}(Q^2)}{3} - G^{u-d}(Q^2) \right]$$

Parameterization of Q² Dependance and continuum limit

	Dipole	Z-expansion	Galster-like
Proton G _E	1 step + 2 step	1 step	-
Proton G _M	1 step + 2 step	1 step	-
Neutron G _E	-	-	1 step + 2 step
Neutron G _M	1 step + 2 step	1 step	-

Parameterization of Q² Dependance and continuum limit

Dipole	z-expansion
$G(Q^2) = \frac{g}{\left(1 + \frac{Q^2}{12}r^2\right)^2}$	$G(Q^2) = \sum_{k=0}^{k_{\max}} a_k z^k$
$G(Q^2, a^2) = \frac{g(a^2)}{\left(1 + \frac{Q^2}{12}r^2(a^2)\right)^2}$	$z = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}}}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}}}}$
$g(a^2) = g_0 + a^2 g_2 , r^2(a^2) = r_0^2 + a^2 r_2^2$	$G(Q^2, a^2) = \sum_{k=0}^{n \max} a_k z^k + a^2 \sum_{j=0}^{j \max} c_j (Q^2)^j$

	Dipole	Z-expansion	Galster-like
Proton G _E	1 step + 2 step	1 step	-
Proton G _M	1 step + 2 step	1 step	-
Neutron G _E	-	-	1 step + 2 step
Neutron G _M	1 step + 2 step	1 step	_

Parameterization of Q² Dependance and continuum limit

Dipole	z-expansion	Galster-like
$G(Q^2) = \frac{g}{\left(1 + \frac{Q^2}{12}r^2\right)^2}$	$G(Q^2) = \sum_{k=0}^{k_{\max}} a_k z^k$	$G(Q^2) = \frac{Q^2 A}{4m_N^2 + Q^2 B} \frac{1}{\left(1 + \frac{Q^2}{0.71 \mathrm{GeV}^2}\right)^2}$
$G(Q^2, a^2) = \frac{g(a^2)}{\left(1 + \frac{Q^2}{12}r^2(a^2)\right)^2}$	$z = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}}}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}}}}$ $k_{\text{max}} \qquad i_{max}$	$G(Q^2, a^2) = \frac{Q^2 A}{4m_N^2 + Q^2 B} \frac{1}{\left(1 + \frac{Q^2}{0.71 \text{ GeV}^2}\right)^2}$
$g(a^2) = g_0 + a^2 g_2 , r^2(a^2) = r_0^2 + a^2 r_2^2$	$G(Q^2, a^2) = \sum_{k=0}^{max} a_k z^k + a^2 \sum_{j=0}^{max} c_j (Q^2)^j$	$+a^2 \sum_{j=0}^{j_{max}} c_j (Q^2)^j$

	Dipole	Z-expansion	Galster-like
Proton G _E	1 step + 2 step	1 step	-
Proton G _M	1 step + 2 step	1 step	-
Neutron G _E	-	-	1 step + 2 step
Neutron G _M	1 step + 2 step	1 step	_

Determination of radius and magnetic moment

> Once we have the parameterization of Q^2 and a^2 , the radius can be obtained by:

$$\langle r_X^2 \rangle^q = \frac{-6}{G_X^q(0)} \left. \frac{\partial G_X^q(q^2)}{\partial q^2} \right|_{q^2=0}$$

Determination of radius and magnetic moment

> Once we have the parameterization of Q^2 and a^2 , the radius can be obtained by:

$$\langle r_X^2 \rangle^q = \frac{-6}{G_X^q(0)} \left. \frac{\partial G_X^q(q^2)}{\partial q^2} \right|_{q^2=0}$$

> The moments are obtained simply by taking the value at $Q^2 = 0$:

 $G_M^p(0) = \mu_p, \quad G_M^n(0) = \mu_n$

Proton form factors with an example fit

Proton form factors with an example fit

Neutron form factor with an example fit

Neutron form factor with an example fit

Results

 $\sqrt{\langle r_{\rm F}^2 \rangle^p}$ [fm] $\sqrt{\langle r_M^2 \rangle^p}$ [fm] $(r_F^2)^n$ [fm²] $\sqrt{\langle r_M^2 \rangle^n}$ [fm] μ^p μⁿ H -H Mainz'23 Ю ETMC'20 10 HO-1 10-1 PACS'19 10 10 HO-1 HOH ETMC'19 ю 101 -0-PDG ٠ . This work • . 0.75 0.80 0.85 0.8 2.4 2.6 2.8 -0.15-0.10-0.05 0.9 -1.8-1.60.7 0.7 0.8 r_E^2 r^{2} μ 0.824(13) fm2.509(48)0.848(29)fm Proton -1.570(39)-0.135(47) fm0.891(41) fm Neutron

Summary and Conclusion

- > We have preliminary results at continuum limit, at physical point.
- > Results include light disconnected contributions.
- > Multistate fit ensuring ground state convergence.
- > We will add more statistics to the disconnected contributions.
- > Add analysis results from another lattice volume.

Thank you!

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 101034267