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Nucleon matrix element on lattice

> On lattice, the nucleon matrix element is
accessed using two point and three point
correlation functions.

> The two point function is given by:
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Nucleon matrix element on lattice

> On lattice, the nucleon matrix element is SRR IR

accessed using two point and three point (Fesls) /"*\\

S
correlation functions. &N - AR
. /,' R

> The two point function is given by: \4-/ (Zo, to)

Tt [Fo{xv (ts, @5)Xwv (o, Zo))] Qj,u (finsa t’ins)

> The three point function is given by: (% S) / S
C (Fva CT ﬁ/ ts; tlnS7 tO Z ez(mms To): qe U(Za—To)- P’ X (‘é:\/ J‘\/ " /r

Tr [FV<XN (t37 fs)ju (tin57 j"inS)XN(tO? fo»] :
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Nucleon matrix element on lattice

> We take the two-point and three-point JeilTing, Lias)

functions to momentum Space. -
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Nucleon matrix element on lattice

> We take the two-point and three-point JeilTing, Lias)
functions to momentum space.

> We construct the following ratio to get rid of (XN) - XN)

exponentials and overlaps. \‘/( Z, fo)

C (FV }7 ﬁts tzns) le(fin.mtins)
1L, (L., 0, 0 tsy tins) = —————— X S
H( vyP sy P;ls zns) C(F07ﬁ7t8) (I—’S f_s)/—‘\
C(To,p;ts — tins)C(Lo, P'; tins)C (Lo, 75 ts) X -~
C(FOaﬁ;ts N tins)C(FOaﬁ; tins)C(POa —;ts) \-4-/ (577017%0)
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Lattice setup

> We use clover improved, twisted-mass fermions.
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Lattice setup

> We use clover improved, twisted-mass fermions (O(a) improved).

> We use three ensembles with Nf=2+1+1 from ETMC.

Ensemble (%)? x (%) a |fm] my [MeV| m,L
cB211.072.64 64° x 128 0.07957(13) 140.2(2) 3.62
cC211.060.80 80° x 160  0.06821(13) 136.7(2)  3.78

cD211.054.96  96° x 192  0.05692(12)  140.8(2)  3.90
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Connected and disconnected contributions
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momenta is set to O.
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Connected and disconnected contributions
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Connected and disconnected contributions

jp, (ffins ’ tins)

For connected contribution, the sink
momenta is set to O.

AIIT for multiple t_values are computed.

The number of source positions are
increased for increasing t, to counter
increase in noise.

Lattice conserved current used, no
renormalization needed.

(Zo,to)

Disconnected contribution is obtained
from correlating high  statistics
two-point function with disconnected
quark loop. Alexandrou et. al
[1812.10311]

Disconnected loop computed using
deflation, hierarchical probing,
dilution.

Local current used, renormalization
required.
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Statistics

> Statistics for connected three point

functions.
cB211.072.64 cC211.060.80 cD211.054.96
Neont— D0 Neont—400 Neont—o00

bof  Hlim] e R T b/ Tilim]  Mare
8 0.64 1 6 0.41 1 8 0.46 1
10 0.80 2 8 0.55 2 10 0.57 2
12 0.96 5] 10 0.69 4 12 0.68 4
14 112 10 12 0.82 10 14 0.80 8
16 1.28 32 14 0.96 22 16 0.91 16
18 1.44 112 16 1.10 48 18 1.03 32
20 1.60 128 18 1.24 45 20 1.14 64
20 1.37 116 22 1.25 16
22 1.51 246 24 1:37 32

26 1.48 64
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Statistics

> Statistics for connected three point > Statistics for disconnected
functions. three point functions.
cB211.072.64 cC211.060.80 cD211.054.96 Busemibie Beost  Tlen  Mome
n’conf_750 ”conf_400 7’*(:01’11"_500 I
ts/a tg[fm] n te/w Bylim] n ts/a ts[fm| n cBS1:0r2.62 ol 200 &FF
ls/ A Us Nsrc s/ s Nsrc s/ s Nsre = =
3 0.64 1 G 0l 1 3 046 i cC211.060.80 400 450 650
10 080 2 8 055 2 10 057 2 cD211.054.96 500 - 480
12 0.96 5 10 0.69 4 12 0.68 4
14 112 10 12 082 10 14 0.80 8
16 128 32 14 096 22 16 091 16
18 144 112 16 1.10 48 18 1.03 32
20  1.60 128 18 124 45 20 114 64
20 137 116 22 125 16
22 151 246 24 137 32

26 1.48 64
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Excited state contamination

> We are interested in the ground state matrix element of nucleons.
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Excited state contamination

> We are interested in the ground state matrix element of nucleons.

> For connected, we do a multi-state fit using the following expressions of two
point (spectral decomposition) and three point functions to reach ground state.

O(P()aﬁ) tS) : Z Cn (ﬁ)e—En (P)ts

Oﬂ (Fk7 q_; tS? tins) = Z A;j (Fk7 @e_E@ (ﬁ)(ts_tlns)_Ej (@tins
2]
0,0
ATy, q)

Hu (Fu§ q_> : =
Veo@eo(@
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Multi-state fits to correlators

> We do a three-state fit to the two-point function and a two-state fit to the
three-point function per jackknife bin simultaneously.
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Multi-state fits to correlators

> We do a three-state fit to the two-point function and a two-state fit to the
three-point function per jackknife bin simultaneously.

> Keeping the isoscalar and isovector case separate, we fit together, the three
point functions contributing to G, and G,, together with the two point function.

> The ground state energy, F,(0) and the first excited state energy, F,(0), is
shared between two-point and three-point functions.

> The energy at finite momenta is determined using dispersion relation.

En(p) = \/m3 + 72

> The second excited state energy only appears in the two point function.
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Extraction of Form Factors and Model Averaging

> The is done for each Q? value.
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Extraction of Form Factors and Model Averaging

> The is done for each Q? value.
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Extraction of Form Factors and Model Averaging

> The is done for each Q? value.
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Isovector form factors

> The procedure is repeated for all Q* values for both electric and magnetic case
resulting in the following.
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Isovector form factors

> The procedure is repeated for all Q* values for both electric and magnetic case

i-4g?)

resulting in the following.
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Isoscalar form factors

> Similarly the following is obtained for isoscalar case.
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Isoscalar form factors

> Similarly the following is obtained for isoscalar case.
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Disconnected contributions to isoscalar form factor

> For the isovector contribution, the disconnected contribution cancels (u,d degeneracy
in isospin limit).
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Disconnected contributions to isoscalar form factor

> For the isovector contribution, the disconnected contribution cancels (u,d degeneracy).

> The following is the result only for isoscalar combination (Plateau fits).
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Proton form factors

> The isoscalar and isovector form factors
can be combined in the following way to
give proton form factor.
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Proton form factors

> The isoscalar and isovector form factors 1
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Proton form factors

> The isoscalar and isovector form factors
can be combined in the following way to

give proton form factor.

GR(Q?)
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Neutron form factors

> The isoscalar and isovector form factors
can be combined in the following way to
give neutron form factor.
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Neutron form factors

> The isoscalar and isovector form factors 1 [Gutd(Q?)
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Neutron form factors

> The isoscalar and isovector form factors

can be combined in the following way to > G"(Q*) = 5|/ — —C (Q7)
give neutron form factor.
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Parameterization of Q? Dependance and continuum limit

Dipole

2y _ g
G(Q%) —<1 N %r2>2

G(Q* %) =

9(a®) = go + a’gz , 7*(a®) = r§ + a®r}

Dipole Z-expansion Galster-like
Proton G, 1step + 2 step 1step -
Proton G,, 1step + 2 step 1step -
Neutron G - - 1step + 2 step
Neutron G,, 1step + 2 step 1step -
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Parameterization of Q? Dependance and continuum limit

Dipole z-expansion
CCs @) =3
2 P = arz
(1+ %)
2 2 g(a2) 5 = \/m — Viteut
G(Q , A ) i 2 P} \/m + tcut
(1 + %r2(a2)) \

kmax jmam

2,2 G(Q2;CL2) = Z arz”® + a2 Z Cj(Q2)j
k=0 j=0

g(a2) = 9o +(I292 , 7”2((12) = r(2) + a“r;
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Parameterization of Q? Dependance and continuum limit

Dipole z-expansion Galster-like
s =—— G@) = 3% ast 6@ = 22 -
(1+%r2) = Ami @B (14 )
2 2 9(a2) z = \/m — \/ﬁ
G(Q?%,a*) = - 5 Veous + Q2 + Vi 2> 2 _ Q%A 1
(1 ) ) R B
Kmax ) Jmaz 2y '0.71 GeV?2
g(a®) = go + a’g2 , r*(a®) = 1§ + a*r} Z g Z e +a? Jf c; (Q*)
Dipole Z-expansion Galster-like
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Determination of radius and magnetic moment

> Once we have the parameterization of Q* and a?, the radius can be obtained by:

N q (.2
() = s ST
Gx(0) dq

q*=0
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Determination of radius and magnetic moment

> Once we have the parameterization of Q* and a?, the radius can be obtained by:

N q (.2
() = s ST
Gx(0) dq

q*=0

> The moments are obtained simply by taking the value at Q* = 0:

G (0) = pp, Gy (0) = pm
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Proton form factors with an example fit
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Proton form factors with an example fit
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Neutron form factor with an example fit
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Neutron form factor with an example fit
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Results
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Summary and Conclusion

> We have preliminary results at continuum limit, at physical point.

> Results include light disconnected contributions.
> Multistate fit ensuring ground state convergence.
> We will add more statistics to the disconnected contributions.

> Add analysis results from another lattice volume.

Thank you!
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