Proton and neutron electromagnetic form factors using N_f=2+1+1 twisted-mass fermions with physical values of the quark masses

Constantia Alexandrou, Simone Bacchio, Giannis Koutsou, Gregoris Spanoudes, Bhavna Prasad,

➢ Interested in theoretically probing the structure of nucleons using lattice QCD.

- \triangleright Interested in theoretically probing the structure of nucleons using lattice QCD.
- ➢ We take into account disconnected contribution and take the continuum limit at physical point.

- \triangleright Interested in theoretically probing the structure of nucleons using lattice QCD.
- We take into account disconnected contribution and take the continuum limit at physical point.
- \geq The nucleon matrix element of for the electromagnetic current is given by:

$$
\langle N(p',s')|j_{\mu}|N(p,s)\rangle = \sqrt{\frac{m_N^2}{E_N(\vec{p}')E_N(\vec{p})}}\bar{u}_N(p',s')
$$

$$
\left[\gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_N}F_2(q^2)\right]u_N(p,s)
$$

- \triangleright Interested in theoretically probing the structure of nucleons using lattice QCD.
- We take into account disconnected contribution and take the continuum limit at physical point.
- \geq The nucleon matrix element of for the electromagnetic current is given by:

$$
\langle N(p',s')|j_{\mu}|N(p,s)\rangle = \sqrt{\frac{m_N^2}{E_N(\vec{p'})E_N(\vec{p})}}\bar{u}_N(p',s')
$$

$$
\left[\gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_N}F_2(q^2)\right]u_N(p,s)
$$

$$
G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_N^2}F_2(q^2)
$$

$$
G_M(q^2) = F_1(q^2) + F_2(q^2)
$$

 \triangleright On lattice, the nucleon matrix element is accessed using two point and three point correlation functions.

- \geq On lattice, the nucleon matrix element is accessed using two point and three point correlation functions.
- \triangleright The two point function is given by:

$$
\mathcal{E}(\Gamma_0, \vec{p}; t_s, t_0) = \sum_{\vec{x}_s} e^{-i(\vec{x}_s - \vec{x}_0) \cdot \vec{p}} \times \text{Tr} \left[\Gamma_0 \langle \chi_N(t_s, \vec{x}_s) \bar{\chi}_N(t_0, \vec{x}_0) \rangle \right]
$$

- \geq On lattice, the nucleon matrix element is accessed using two point and three point correlation functions.
- \triangleright The two point function is given by:

$$
\mathcal{C}(\Gamma_0, \vec{p}; t_s, t_0) = \sum_{\vec{x}_s} e^{-i(\vec{x}_s - \vec{x}_0) \cdot \vec{p}} \times \text{Tr} \left[\Gamma_0 \langle \chi_N(t_s, \vec{x}_s) \bar{\chi}_N(t_0, \vec{x}_0) \rangle \right]
$$

 \triangleright The three point function is given by: $\mathcal{C}_\mu(\Gamma_\nu,\vec{q},\vec{p}^{\,\prime};t_s,t_{\rm ins},t_0) = \sum\ e^{i(\vec{x}_{\rm ins}-\vec{x}_0)\cdot\vec{q}}e^{-i(\vec{x}_s-\vec{x}_0)\cdot\vec{p}^{\,\prime}}\times$ $\vec{x}_{ins}, \vec{x}_{s}$ $\text{Tr}\left[\Gamma_{\nu}\langle\chi_N(t_s,\vec{x}_s)j_{\mu}(t_{\text{ins}},\vec{x}_{\text{ins}})\bar{\chi}_N(t_0,\vec{x}_0)\rangle\right].$

Nucleon matrix element on lattice

 \triangleright We take the two-point and three-point functions to momentum space.

Nucleon matrix element on lattice

- \triangleright We take the two-point and three-point functions to momentum space.
- \triangleright We construct the following ratio to get rid of exponentials and overlaps.

$$
(\vec{x}_s, t_s)
$$
\n
$$
(x_N)
$$
\n
$$
(x_N)
$$
\n
$$
(x_0, t_0)
$$
\n
$$
(x_0, t_0)
$$
\n
$$
(x_{\text{ins}}, t_{\text{ins}})
$$

$$
I_{\mu}(\Gamma_{\nu}, \vec{p}', \vec{p}; t_s, t_{ins}) = \frac{C_{\mu}(\Gamma \vec{\nu}, \vec{p}', \vec{p}, \vec{v}_s, \vec{v}_{ins})}{C(\Gamma_0, \vec{p}'; t_s)} \times \sqrt{\frac{C(\Gamma_0, \vec{p}; t_s - t_{ins}) C(\Gamma_0, \vec{p}'; t_{ins}) C(\Gamma_0, \vec{p}'; t_s)}{C(\Gamma_0, \vec{p}'; t_s - t_{ins}) C(\Gamma_0, \vec{p}; t_{ins}) C(\Gamma_0, \vec{p}; t_s)}}
$$

T

 $C(\Gamma \vec{n'} \vec{n'} t + \cdot \cdot \cdot)$

➢ We use clover improved, twisted-mass fermions.

- \triangleright We use clover improved, twisted-mass fermions (O(a) improved).
- \triangleright We use three ensembles with N_f=2+1+1 from ETMC.

 \triangleright For connected contribution, the sink momenta is set to 0.

- \triangleright For connected contribution, the sink momenta is set to 0.
- \triangleright All Γ for multiple t_s values are computed.

- \triangleright For connected contribution, the sink momenta is set to 0.
- \triangleright All Γ for multiple t_s values are computed.
- \triangleright The number of source positions are increased for increasing t_{s} , to counter increase in noise.

- \triangleright For connected contribution, the sink momenta is set to 0.
- \triangleright All Γ for multiple t_s values are computed.
- \triangleright The number of source positions are increased for increasing t_{s} , to counter increase in noise.
- ➢ Lattice conserved current used, no renormalization needed.

- \triangleright For connected contribution, the sink momenta is set to 0.
- \triangleright All Γ for multiple t_s values are computed.
- \triangleright The number of source positions are increased for increasing t_{s} , to counter increase in noise.
- ➢ Lattice conserved current used, no renormalization needed.

➢ Disconnected contribution is obtained from correlating high statistics two-point function with disconnected quark loop. Alexandrou et. al [1812.10311]

- \triangleright For connected contribution, the sink momenta is set to 0.
- \triangleright All Γ for multiple t_s values are computed.
- \triangleright The number of source positions are increased for increasing t_{s} , to counter increase in noise.
- ➢ Lattice conserved current used, no renormalization needed.
- ➢ Disconnected contribution is obtained from correlating high statistics two-point function with disconnected quark loop. Alexandrou et. al [1812.10311]
- \triangleright Disconnected loop computed using deflation, hierarchical probing, dilution.

- \triangleright For connected contribution, the sink momenta is set to 0.
- \triangleright All Γ for multiple t_s values are computed.
- \triangleright The number of source positions are increased for increasing t_{s} , to counter increase in noise.
- ➢ Lattice conserved current used, no renormalization needed.
- ➢ Disconnected contribution is obtained from correlating high statistics two-point function with disconnected quark loop. Alexandrou et. al [1812.10311]
- \triangleright Disconnected loop computed using deflation, hierarchical probing, dilution.
- \triangleright Local current used, renormalization required.

Statistics

➢ Statistics for connected three point functions.

 $\overline{2}$ $\overline{4}$ 8 16

64

Statistics

➢ Statistics for connected three point functions.

➢ Statistics for disconnected three point functions.

➢ We are interested in the ground state matrix element of nucleons.

- ➢ We are interested in the ground state matrix element of nucleons.
- ➢ For connected, we do a multi-state fit using the following expressions of two point (spectral decomposition) and three point functions to reach ground state.

$$
C(\Gamma_0, \vec{p}, t_s) = \sum_n c_n(\vec{p}) e^{-E_n(\vec{p})t_s}
$$

- ➢ We are interested in the ground state matrix element of nucleons.
- ➢ For connected, we do a multi-state fit using the following expressions of two point (spectral decomposition) and three point functions to reach ground state.

$$
C(\Gamma_0, \vec{p}, t_s) = \sum_n c_n(\vec{p}) e^{-E_n(\vec{p})t_s}
$$

$$
C_{\mu}(\Gamma_k, \vec{q}, t_s, t_{\text{ins}}) = \sum_{i,j} A_{\mu}^{ij}(\Gamma_k, \vec{q}) e^{-E_i(\vec{p})(t_s - t_{\text{ins}}) - E_j(\vec{q})t_{\text{ins}}}
$$

- ➢ We are interested in the ground state matrix element of nucleons.
- ➢ For connected, we do a multi-state fit using the following expressions of two point (spectral decomposition) and three point functions to reach ground state.

$$
C(\Gamma_0, \vec{p}, t_s) = \sum_n c_n(\vec{p}) e^{-E_n(\vec{p})t_s}
$$

$$
C_{\mu}(\Gamma_k, \vec{q}, t_s, t_{\text{ins}}) = \sum_{i,j} A_{\mu}^{ij}(\Gamma_k, \vec{q}) e^{-E_i(\vec{p})(t_s - t_{\text{ins}}) - E_j(\vec{q})t_{\text{ins}}}
$$

$$
\Pi_{\mu}(\Gamma_{\nu};\vec{q}) = \frac{A_{\mu}^{0,0}(\Gamma_{\nu},\vec{q})}{\sqrt{c_0(\vec{0})c_0(\vec{q})}}
$$

Multi-state fits to correlators

 \triangleright We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.

- ➢ We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.
- Keeping the isoscalar and isovector case separate, we fit together, the three point functions contributing to ${\rm G}_{_{\rm E}}$ and ${\rm G}_{_{\rm M}}$ together with the two point function.
- \triangleright We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.
- Keeping the isoscalar and isovector case separate, we fit together, the three point functions contributing to ${\rm G}_{_{\rm E}}$ and ${\rm G}_{_{\rm M}}$ together with the two point function.
- \triangleright The ground state energy, $E_0(\vec{0})$ and the first excited state energy, $E_1(\vec{0})$, is shared between two-point and three-point functions.
- \triangleright We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.
- Keeping the isoscalar and isovector case separate, we fit together, the three point functions contributing to ${\rm G}_{_{\rm E}}$ and ${\rm G}_{_{\rm M}}$ together with the two point function.
- \triangleright The ground state energy, $E_0(\vec{0})$ and the first excited state energy, $E_1(\vec{0})$, is shared between two-point and three-point functions.
- The energy at finite momenta is determined using dispersion relation.

$$
E_N(\vec{p}) = \sqrt{m_N^2 + \vec{p}^2}
$$

- \triangleright We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.
- Keeping the isoscalar and isovector case separate, we fit together, the three point functions contributing to ${\rm G}_{_{\rm E}}$ and ${\rm G}_{_{\rm M}}$ together with the two point function.
- \triangleright The ground state energy, $E_0(\vec{0})$ and the first excited state energy, $E_1(\vec{0})$, is shared between two-point and three-point functions.
- \triangleright The energy at finite momenta is determined using dispersion relation.

$$
E_N(\vec{p}) = \sqrt{m_N^2 + \vec{p}^2}
$$

The second excited state energy only appears in the two point function.

 \triangleright The is done for each Q² value.

- \triangleright The is done for each Q² value.
- \triangleright We vary the ranges for:
	- \triangleright Two-point function $t_{s,min}$

- \triangleright The is done for each Q² value.
- \triangleright We vary the ranges for:
	- \triangleright Two-point function $t_{s,min}$
	- \triangleright Ratio t_{s,min} and t_{ins,min}

- \triangleright The is done for each Q² value.
- \triangleright We vary the ranges for:
	- \triangleright Two-point function t_{s,min}
	- \triangleright Ratio t_{s,min} and t_{ins,min}
- \triangleright Results from all fits are then model averaged [2309.05774].

- \triangleright The is done for each Q² value.
- \triangleright We vary the ranges for:
	- \triangleright Two-point function t_{s,min}
	- \triangleright Ratio t_{s,min} and t_{ins,min}
- \triangleright Results from all fits are then model averaged.
- \geq On right is an example of isovector G_E and G_M for the cC211.060.80 ensemble for first non-zero Q^2 .

Isovector form factors

 \triangleright The procedure is repeated for all Q² values for both electric and magnetic case resulting in the following.

Isovector form factors

 \triangleright The procedure is repeated for all Q² values for both electric and magnetic case resulting in the following.

Isovector form factors

 \triangleright The procedure is repeated for all Q² values for both electric and magnetic case resulting in the following.

Isoscalar form factors

➢ Similarly the following is obtained for isoscalar case.

Isoscalar form factors

➢ Similarly the following is obtained for isoscalar case.

Isoscalar form factors

➢ Similarly the following is obtained for isoscalar case.

.

 \triangleright For the isovector contribution, the disconnected contribution cancels (u,d degeneracy in isospin limit).

- ➢ For the isovector contribution, the disconnected contribution cancels (u,d degeneracy).
- \triangleright The following is the result only for isoscalar combination (Plateau fits).

➢ For the isovector contribution, the disconnected contribution cancels (u,d degeneracy).

 \triangleright The following is the result only for isoscalar combination (Plateau fits).

➢ For the isovector contribution, the disconnected contribution cancels (u,d degeneracy).

 \triangleright The following is the result only for isoscalar combination (Plateau fits).

$$
\bigcap_{n=0}^{\infty} G^p(Q^2) = \frac{1}{2} \left[\frac{G^{u+d}(Q^2)}{3} + G^{u-d}(Q^2) \right]
$$

$$
\sum \left| G^{p}(Q^{2}) = \frac{1}{2} \left[\frac{G^{u+d}(Q^{2})}{3} + G^{u-d}(Q^{2}) \right] \right|
$$

$$
\bigcap_{n=0}^{\infty} G^p(Q^2) = \frac{1}{2} \left[\frac{G^{u+d}(Q^2)}{3} + G^{u-d}(Q^2) \right]
$$

$$
\sum \left| G^n(Q^2) = \frac{1}{2} \left[\frac{G^{u+d}(Q^2)}{3} - G^{u-d}(Q^2) \right] \right|
$$

$$
\sum \Bigg| G^n(Q^2) = \frac{1}{2} \left[\frac{G^{u+d}(Q^2)}{3} - G^{u-d}(Q^2) \right]
$$

$$
\sum \Bigg| G^n(Q^2) = \frac{1}{2} \left[\frac{G^{u+d}(Q^2)}{3} - G^{u-d}(Q^2) \right]
$$

Parameterization of Q^2 Dependance and continuum limit

Parameterization of Q^2 Dependance and continuum limit

Parameterization of Q^2 Dependance and continuum limit

Determination of radius and magnetic moment

 \triangleright Once we have the parameterization of Q² and a², the radius can be obtained by:

$$
\langle r_X^2 \rangle^q = \frac{-6}{G_X^q(0)} \left. \frac{\partial G_X^q(q^2)}{\partial q^2} \right|_{q^2=0}
$$

Determination of radius and magnetic moment

 \triangleright Once we have the parameterization of Q² and a², the radius can be obtained by:

$$
\langle r_X^2 \rangle^q = \frac{-6}{G_X^q(0)} \left. \frac{\partial G_X^q(q^2)}{\partial q^2} \right|_{q^2=0}
$$

 \triangleright The moments are obtained simply by taking the value at Q² = 0:

 $G_M^p(0) = \mu_p, \quad G_M^n(0) = \mu_n$

Proton form factors with an example fit

Proton form factors with an example fit

Neutron form factor with an example fit

Neutron form factor with an example fit

Results

Summary and Conclusion

- We have preliminary results at continuum limit, at physical point.
- Results include light disconnected contributions.
- Multistate fit ensuring ground state convergence.
- We will add more statistics to the disconnected contributions.
- Add analysis results from another lattice volume.

Thank you!

[This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under](https://engage.cyi.ac.cy/) the Marie Skłodowska-Curie [Grant Agreement No. 101034267](https://cordis.europa.eu/project/id/101034267)