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Nucleon matrix element on lattice

➢ We take the two-point and three-point 
functions to momentum space.

➢ We construct the following ratio to get rid of 
exponentials and overlaps.
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Lattice setup

➢ We use clover improved, twisted-mass fermions (O(a) improved).

➢ We use three ensembles with Nf=2+1+1 from ETMC. 
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➢ Disconnected loop computed using 
deflation, hierarchical probing, 
dilution.

➢ Local current used, renormalization 
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➢ For connected contribution, the sink 
momenta is set to 0.

➢ All 𝚪 for multiple ts values are computed.

➢ The number of source positions are 
increased for increasing ts, to counter 
increase in noise.

➢ Lattice conserved current used, no 
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Multi-state fits to correlators

➢ We do a three-state fit to the two-point function and a two-state fit to the 
three-point function per jackknife bin simultaneously.

➢ Keeping the isoscalar and isovector case separate, we fit together, the three 
point functions contributing to GE and GM together with the two point function.

➢ The ground state energy,     , and the first excited state energy,      , is           
shared between two-point and three-point functions.

➢ The energy at finite momenta is determined using dispersion relation. 

➢ The second excited state energy only appears in the two point function.
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➢ The is done for each Q2 value. 

➢ We vary the ranges for:

➢ Two-point function ts,min

➢ Ratio ts,min and tins,min 

➢ Results from all fits are then 
model averaged [2309.05774].
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Extraction of Form Factors and Model Averaging

➢ The is done for each Q2 value. 

➢ We vary the ranges for:

➢ Two-point function ts,min

➢ Ratio ts,min and tins,min 

➢ Results from all fits are then 
model averaged.

➢ On right is an example of 
isovector GE and GM for the  
cC211.060.80 ensemble for first 
non-zero Q2 .
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Disconnected contributions to isoscalar form factor
➢ For the isovector contribution, the disconnected contribution cancels (u,d degeneracy 

in isospin limit).

.
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Parameterization of Q2 Dependance and continuum limit

Dipole Z-expansion Galster-like

Proton GE 1 step + 2 step 1 step -

Proton GM 1 step + 2 step 1 step -

Neutron GE - - 1 step + 2 step

Neutron GM 1 step + 2 step 1 step -
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Results
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Summary and Conclusion

Thank you!
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➢ We have preliminary results at continuum limit, at physical point.

➢ Results include light disconnected contributions.

➢ Multistate fit ensuring ground state convergence.

➢ We will add more statistics to the disconnected contributions.

➢ Add analysis results from another lattice volume.

https://engage.cyi.ac.cy/
https://cordis.europa.eu/project/id/101034267

