
How much strangeness is needed for the axial-vector form factor?
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Overview

▶ we considered the axial-vector and induced pseudo-scalar form factor in SU(2) ChPT

▶ we obtained a simultaneous fit of both form factors to lattice data

arXiv:2402.04905

https://arxiv.org/abs/2402.04905


Determination of nucleon and isobar mass

▶ using the flavor SU(2) chiral Lagrangian in the isospin limit with pion, nucleon and isobar
as degrees of freedom

▶ masses are given by

MN = M +ΣN(MN ,M∆) ,

M∆ = M +∆+Σ∆(MN ,M∆)

▶ 1-loop calculation of the self-energy1

ΣNΣNΣNΣNΣNΣNΣNΣNΣNΣNΣNΣNΣNΣNΣNΣNΣN

=
2

+
1

+
11

+ . . .

▶ our approach: insisting on on-shell masses inside the loop contributions

→ solve a system of two coupled equations

→ lattice data for MN and M∆ are important
1M.F.M. Lutz, Yonggoo Heo, and Xiao-Yu Guo. arXiv:1801.06417.
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▶ inclusion of the isobar: consider lattice ensembles with mπ > ∆ ≈ 300 MeV

▶ full consideration of finite volume effects (FVE)

▶ example2: fit to flavor-SU(2) data from ETMC3

2M. F. M. Lutz, U. Sauerwein, and R. G. E. Timmermans. arXiv:2003.10158.
3C. Alexandrou et al. arXiv:0803.3190.
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Axial-vector form factors of the nucleon

▶ definition (q = p̄ − p):

⟨N(p̄)|Aµ
i (0) |N(p)⟩ = ūN(p̄)

(
γµ GA(q

2) +
qµ

2MN
GP(q

2)
)
γ5

τi
2
uN(p)

▶ GA(0) through high precision measurement of β-decay

GA(0) = 1.2732(23)

▶ Lutz et. al.4 calculated GA up to one-loop level:

GA(t)

aiµ

=
1

+
11

+
111

+ . . .

4M. F. M. Lutz, U. Sauerwein, and R. G. E. Timmermans. arXiv:2003.10158.
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Determination of the loop functions

▶ we insist on on-shell masses

→ no chiral expansion of MN and M∆

→ result expressed in kinematical function times basis integrals

▶ full consideration of FVE in the hadron masses (implicit)

▶ no explicit FVE of the axial loop functions

→ ongoing work

▶ chiral expansion only in the kinematic functions

question: How to power count the mass difference M∆ −MN ?

δ = M∆ −MN(1 +
∆

M
) ∼ Q2 , m2

π ∼ t ∼ Q2

▶ no chiral expansion of the basis integrals

→ preserve analytic not polynomial structure

11
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▶ flavor SU(2)-ensembles from ETMC5, CLS6 and RQCD7

▶ data points up to mπ = 500 MeV, t ∈ [0,−0.36] GeV2 and mπL ≥ 4.0

▶ lattice scales are fit parameters

▶ simultaneously fitting the masses and GA with an evolutionary fit algorithm8

5C. Alexandrou et al. arXiv:1012.0857 , 6 S. Capitani et al. arXiv:1705.06186 ,7 Gunnar S. Bali et al. arXiv:1412.7336
8Jonas Weßner et al. “Parametric Optimization on HPC Clusters with Geneva”. In: Computing and Software for Big Science (2023). doi:

10.1007/s41781-023-00098-6.
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Motivation to determine GP :
▶ lattice data on the same ensemble available
▶ only two additional LECs

expect an improvement of the fit

▶ evidence if the data can be used9
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9Left figure from Gunnar S. Bali et al. arXiv:1412.7336. Citation corrected (29.06.24, after talk) 7 / 14
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Empirical knowledge of the induced pseudo-scalar form factor

▶ reminder:

⟨N(p̄)|Aµ
i (0) |N(p)⟩ = ūN(p̄)

(
γµ GA(q

2) +
qµ

2MN
GP(q

2)
)
γ5

τi
2
uN(p)

▶ empirical determination of induced pseudo-scalar coupling

gP =
mµ

2MN
GP(−0.877m2

µ)

over ordinary muon capture process10 µ− + p → n + νµ

▶ empirical value
gP = 10.6(2.7)

10Tim Gorringe and Harold W. Fearing. arXiv:0206039.

8 / 14

https://arxiv.org/abs/nucl-th/0206039


The induced pseudo-scalar form factor

▶ additional diagrams are needed

2

1

fπ

1

Zπ

2

▶ Chiral Ward identity in the chiral limit:

lim
m→0

[
GA(t) +

t

4M2
N

GP(t)
]
= 0

Need to update expression of GA in terms of an extended set of basis integrals11

11Tobias Isken et al. arXiv:2309.09695
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The induced pseudo-scalar form factor
▶ additional diagrams are needed

2

1

fπ

1

Zπ

2

t −m2
π

4M2
N

GP(t) = −gA
fπ
f

t −m2
π

4M2
N

GP(t) = −gA Zπ

fπ = f − 1

f
Īπ +

m2
π

f
l4 Zπ = 1 +

2

3 f 2
Īπ − 2

m2
π

f 2
l4

Determination of the mesonic LEC l4 and therefore the pion-decay constant fπ only
through GA and GP possible
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Fit details
▶ GP(t) data from CLS (Mainz) can be used, while RQCD can not be fitted

→ excited state contamination ?
▶ data points up to mπ = 500 MeV, t ∈ [0,−0.36] GeV2 and mπL ≥ 4.0
▶ using 124 lattice points
▶ 32 degrees of freedom (22 LEC and 10 lattice scales )
▶ simultaneous fit of the nucleon, isobar masses, GA and GP

→ to our knowledge: never been done successfully before

χ2
min/Ndf = 99.12/(124− 32) = 1.077

▶ scale setting with the nucleon mass

(1) Very good characterization of the GP(t) lattice data from Mainz
(2) Improved description of GA compared to previous ChPT calculation

due to updated basis functions
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Fit results

▶ large subset of LEC is consistent with other works e.g.

LEC f [MeV] M [MeV] M +∆

fit result 83.43(+0.30
−0.81) 893.79(+0.55

−0.16) 1200.42(+0.72
−0.39)

▶ axial radius, induced pseudo-scalar-coupling and the axial coupling

⟨r2A⟩ =
6G ′

A(0)

GA(0)
, gP =

mµ

2MN
GP(−0.877m2

µ)

are given by

Observable ⟨r2A⟩ [fm2] gP GA(0)

Fit results 0.20137(+0.0032
−0.0035) 8.2521(+0.039

−0.039) 1.2284(+0.0021
−0.0059)

Empirical 0.46(24) 10.6(2.7) 1.2732(23)

▶ our axial coupling significantly below empirical value

→ interpretation: due to neglect of strange quark effects
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▶ pion-nucleon sigma term

σπN = m
∂

m
MN

▶ some values from the literature
this work Lutz et al. SU(2) Lutz et al. SU(3)12 empirical13

σπN [MeV] 42.22(+0.02
−0.05) 49.31(+0.41

−0.12) 42.4(4) 58(6)

→ method of incorporation if isobar is relevant

▶ pion decay constant

this work PDG value

fπ [MeV] 84.96(+0.29
−0.82) 92.21± 0.14

▶ results largely stems from negative l4 = −0.0151(+0.0003
−0.0011)

Raises the question of the role of the strange quark in fπ but also in GA and σπN .
Reason of this discovery: scale setting with MN and not fπ

12Matthias F. M. Lutz, Yonggoo Heo, and Renwick J. Hudspith. arXiv:2406.07442.
13e.g. Jacobo Ruiz de Elvira et al. arXiv:1706.01465

13 / 14

https://arxiv.org/abs/2406.07442
https://arxiv.org/abs/1706.01465


Summary
▶ calculation of GA and GP in a novel chiral framework for flavor SU(2) ensembles

▶ simultaneous reproduction of both form factors on ensembles up to mπ = 500 MeV

▶ determination of fπ only through GA and GP

▶ results from observables indicate a crucial importance of strange quark effects

Outlook
▶ we plan a full calculation also of the explicit finite volume effects of the form factors

▶ our SU(2)-chiral approach should be used on ensembles with fixed physical strange quark
mass

→ possibility to further scrutinize the importance of the strange quark

Thank you for your attention
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Backup slides
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Framework
▶ as an effective field theory we use a flavor SU(2) chiral Lagrangian in the isospin limit

with pion, nucleon and isobar as degrees of freedom

▶ the fields are defined as

ϕ =

(
π0

√
2π+

√
2π− −π0

)
, N =

(
p
n

)
,

∆111
µ = ∆++

µ , ∆112
µ = ∆+

µ /
√
3 , ∆122

µ = ∆0
µ/

√
3 , ∆222

µ = ∆−
µ

▶ example of building blocks

Uµ = 1
2 u

†
((

∂µe
i ϕ/f

)
−
{
i aµ, e

i ϕ/f
})

u† ,

DµN = ∂µN + ΓµN , u = e i ϕ/f

▶ construct terms of the Lagrangian up to chiral order Q3

▶ reminder : mπ ∼ Q
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▶ example of the Lagrangian:

L ⊃ N̄ (i /D −M)N + gA N̄ γµ γ5iUµN

+ fS
(
(∆̄µ · iUµ)N + h.c.

)
+ hA tr

[
(∆̄µ · γ5 γν ∆µ) iUµ

]
+ . . .

▶ interpretations:
M : chiral mass of the nucleon
gA : axial coupling between two nucleons at tree level
fS : axial coupling between an isobar and a nucleon at tree level
hA : axial coupling between two isobars at tree level

▶ in sum we have 25 different Low Energies Constants (LEC)
▶ subsets of LECs are related through Large-Nc , e.g.

hA = 9 gA − 6 fS

strategy: fit simultaneously and consistently masses and form-factors to lattice-QCD
data for varying pion masses to determine LECs
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▶ reduction of the loop contributions into the Passarino-Veltman basis

ILπR =

∫
d4l

(2π)4
i

((l − p̄)2 −M2
L)(l

2 −m2
π)((l − p)2 −M2

R)
,

IπR =

∫
d4l

(2π)4
−i

(l2 −m2
π)((l − p)2 −M2

R))
, Iπ =

∫
d4l

(2π)4
i

l2 −m2
π

▶ to lift the singularities at t = 0 in the triangle contributions

∆ILπR(t) = ILπR(t)− ILπR(t = 0)

▶ to insure the right power counting subtractions are needed

ĪLπR = ILπR − γLπR ∼ Q0 , ∆ĪLπR = ∆ILπR − q2 γ′LπR ∼ Q0 ,

ĪπR = IπR − γπR ∼ Q1

▶ chiral expansion only in the kinematic functions
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▶ after the Passarino-Veltman reduction we find:

GA(t) = gA ZN + 4 g+
χ m2

π + gR t

+
gA
f 2

{
JAπ (t) + JAπN(t) + JANπ(t)

}
+

g3
A

4 f 2
JANπN(t) +

5 hA f 2S
9 f 2

JA∆π∆(t)

+
fS
3 f 2

{
JAπ∆(t) + JA∆π(t)

}
+

2 gA f 2S
3 f 2

{
JANπ∆(t) + JA∆πN(t)

}
+O

(
Q4

)
,

t −m2
π

4M2
N

GP(t) = −gA

(
ZN + Zπ + fπ/f − 2

)
− m2

π (4 g
+
χ + g−

χ )− gR (t −m2
π)

+
gA
f 2

{
JPπ (t) + JPπN(t) + JPNπ(t)

}
+

g3
A

4 f 2
JPNπN(t) +

5 hA f 2S
9 f 2

JP∆π∆(t)

+
fS
3 f 2

{
JPπ∆(t) + JP∆π(t)

}
+

2 gA f 2S
3 f 2

{
JPNπ∆(t) + JP∆πN(t)

}
+O

(
Q4

)
,

▶ Chiral Ward identity in the chiral limit:

lim
m→0

[
GA(t) +

t

4M2
N

GP(t)
]
= 0 ⇒ lim

m→0

[
JA... + JP...

]
= 0
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▶ triangle contribution in GP pose a challenge
▶ due to projection: 1/t2 singularity arise after reduction into the Passarino–Veltman basis
▶ extended subtraction of ILπR

∆∆ILπR(t) = ILπR(t)− ILπR(t = 0)− t ∂t ILπR(t = 0)

technically possible → breaks Chiral Ward Identity

▶ solution: extend the Passarino–Veltman basis14

Ī
(m,n)
LπR (t) = − γ

(m,n)
LπR

16π2M2
+

∫ 1

0

∫ 1−u

0

dv du um vn

16π2 FLπR(u, v)
∼ Q0 ,

FLπR(u, v) = m2
π + u

(
M2

L −m2
π − (1− u)M2

N

)
+ v

(
M2

R −m2
π − (1− v)M2

N

)
+ u v

(
2M2

N − t
)

▶ due to recursion relations only Ī
(0,n)
LπR (t) and Ī

(n,0)
LπR (t) are needed

▶ no kinematical singularities and power counting violating terms

▶ Chiral Ward identity in the chiral limit is recovered
14Tobias Isken et al. arXiv:2309.09695.
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▶ example

J̄P∆π∆(t) = −2

3

(
2 r t αP

81 +
5

9
m2

π α
P
82 −

10

3
δMN αP

83

)
Īπ∆

− 4

3

[
t αP

91 +
1

3
m2

π α
P
92

]
M2

N

(
Ī
(2,0)
∆π∆(t) + Ī

(0,2)
∆π∆(t)

)
+O

(
Q4

)
,

J̄A∆π∆(t) =
2

3

(
2 r t αA

81 +
5

9
m2

π α
A
82 −

10

3
δMN αA

83

)
Īπ∆

+
4

3
t αA

91M
2
N

(
Ī
(2,0)
∆π∆(t) + Ī

(0,2)
∆π∆(t)

)
+O

(
Q4

)
,

▶ α
A/P
ab are rational functions of r = ∆/M with α

A/P
ab → 1 if r → 0

▶ explicit check that αP
n1 = αA

n1

▶ typical values for r = 0.343 e.g.

α
A/P
81 = 1.554 , αP

81/α
A
81 = 2.783/3.481 , α

A/P
83 = 1.399

▶ partially large deviation from 1

▶ in small scale expansion: ∆ ∼ Q → only leading term α
A/P
ab = 1
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Fit results

▶ large subset of LEC is consistent with other works e.g.

LEC f [MeV] M [MeV] M +∆ gA l3

fit result 83.43(+0.30
−0.81) 893.79(+0.55

−0.16) 1200.42(+0.72
−0.39) 1.1449(+0.0019

−0.0049) 0.0193(+0.0003
−0.0003)

▶ some LEC differ from other SU(2) results with no isobars as degree of freedom

LEC gS [GeV
−1] gV [GeV−2]

fit result 0.9163(+0.0060
−0.0072) −0.8096(+0.0792

−0.1784)

▶ two flipped signs to typically values

LEC l4 h∗A

fit result −0.0151(+0.0003
−0.0011) 0.7893(+0.1123

−0.0229)

▶ h∗A fixed by large -Nc hA = 9 gA − 6 fS and sensitive how to incorporate the isobar

▶ negative sign was reported from a loop study of the pion-nucleon scattering15

15De-Liang Yao et al. In: Journal of High Energy Physics (May 2016). doi: 10.1007/jhep05(2016)038.
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No Contribution
Both diagrams do not contribute due the on-shell masses

121

121
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