Flavor diagonal charges of the nucleon

Rajan Gupta Theoretical Division, T-2 Los Alamos National Laboratory, USA (with S. Park, T. Bhattacharya, S. Mondal, B. Yoon)

LA-UR: 23-27930

Lattice 2024, Liverpool, UK

The neutron is a clean but challenging system

Decays weakly \Rightarrow a stable bound state of QCD

Properties:

- Charges g_A , g_P , g_S , g_T , g_V
- Spin content
 - Quark contribution
 - Gluon contribution
- nEDM
- Form factors
 - Electric, Magnetic
 - Axial
- Distribution functions, moments
 - PDF
 - GPD
- Radiative corrections to decay

NME Collaboration:

Thirteen 2+1-flavor clover ensembles = clover-on-clover formulation

PNDME and NME members

- Tanmoy Bhattacharya (T-2)
- Vincenzo Cirigliano (T-2 \rightarrow INT, UW)
- Rajan Gupta (T-2)
- Emanuele Mereghetti (T-2)
- Boram Yoon (CCS-7 \rightarrow **NVIDIA**)
- Junsik Yoo (PD: 2022 May)
- Yong-Chull Jang (PD: 2017-2018)
- Sungwoo Park (PD: 2018-2021)
- Santanu Mondal (PD: 2019-2021)
- Huey-Wen Lin (MSU)
- Balint Joo (NVIDIA)
- Frank Winter (Jlab)

References

- Charges:
- AFF:
- AFF:
- AFF:
- AFF:
- VFF:
- *σ*_{πN}
- d_n from Θ -term
- d_n from qEDM
- d_n from qcEDM
- Moments of PDFs
- Proton spin:
- NME
- Charges, FF:
- Moments of PDFs

Gupta et al, PRD.98(2018) 034503Gupta et al, PRD 96(2017) 114503

- Jang et al, PRL 124 (2020) 072002
- Jang et al, PRD 109 (2024) 014503
- Tomalak et al, PRD 108 (2023) 074514
- Jang et al, PRD 100 (2020) 014507
- Gupta et al, PRL 127 (2021) 242002
- Bhattacharya etal, PRD 103 (2021) 114507
- Gupta et al, PRD 98 (2018) 091501
- Bhattacharya et al, PRD 98 (2018) 091501 Mondal et al, PRD 102 (2020) 054512
- Lin et al, PRD 98 (2018) 094512

Park et al, PRD 105 (2022) 054505 Mondal et al, JHEP 04 (2021) 044

Acknowledgements for Computational Support: MILC for HISQ ensembles. DOE for computer allocations at NERSC and OLCF USQCD Institutional Computing at LANL

Office of Science

4-year odyssey

- Sungwoo Park et al., arXiv:2401.00721 @lattice 2023
- Sungwoo Park et al., arXiv:2301.07890 @lattice 2022
- Sungwoo Park et al., arXiv:2203.09584 @lattice 2021

Outline

- Analysis of 8 HISQ Lattice Ensembles
- Clover-on-HISQ calculations
- Removing excited-state contributions
- Renormalization
- CCFV fits
- Results

Clover-on-HISQ calculations

Ensemble ID	a [fm]	<i>M</i> _π [MeV]	$M_{\pi}L$	N ^{conn} cfg	$N_{cfg}^{disc,l}$	$N_{cfg}^{disc,s}$
a15m310	~0.15	320	3.93	1917	1917	1917
a12m310	~0.12	310	4.55	1013	1013	1013
a12m220	~0.12	228	4.38	744	958	870
a09m310	~0.09	313	4.51	2263	1017	1024
a09m220	~0.09	226	4.79	964	712	847
a09m130	~0.09	138	3.90	1290	1270	994
a06m310	~0.06	320	4.52	500	808	976
a06m220	~0.06	235	4.41	649	1001	1002

• HYP smeared $N_f = 2 + 1 + 1$ MILC HISQ lattices

- 8 ensembles including one with physical M_{π}^{phys}
- Correlation functions with Clover fermions with a tree-level tadpole improved c_{SW}
- Truncated solver method with bias correction and multigrid for high statistics
- Wuppertal smearing with $\langle r \rangle \approx 0.7 0.75$ fermi

Lattice Methodology well established for "connected" and "disconnected" 3-point correlation functions

disconnected contributions (got via stochastic methods) are noisier for the same computational cost and smaller in value

Isoscalar
$$g_{A,S,T}^{u+d} = g_{A,S,T}^{u+d,conn} + 2g_{A,S,T}^{l,disc}$$

Isovector $g_{A,S,T}^{u-d} = g_{A,S,T}^{u-d,conn}$ In the isospin symmetric limit

Spectral decomposition of Γ^2 and Γ^3

Three-point function for matrix elements of axial current \mathcal{A}_{μ} $\langle \Omega | N(\tau) \mathcal{A}_{\mu}(t) \overline{N}(0) | \Omega \rangle$

Insert $T = e^{-H\Delta t} \sum_i |n_i\rangle \langle n_i|$ at each Δt with $T |n_i\rangle = e^{-H\Delta t} |n_i\rangle = e^{-E\Delta t} |n_i\rangle$

$$\frac{\langle \Omega | \overline{N}(\tau) \cdots e^{-H\Delta t} \sum_{j} | n_{j} \rangle \langle n_{j} | \mathcal{A}_{\mu} e^{-H\Delta t} \sum_{i} | n_{i} \rangle \langle n_{i} | \cdots N(0) | \Omega}{\sum_{i,j} \langle \Omega | \overline{N} | n_{j} \rangle e^{-E_{j}(\tau - t)} \langle n_{j} | \mathcal{A}_{\mu} | n_{i} \rangle e^{-E_{i}t} \langle n_{i} | N | \Omega \rangle}{A_{j}^{*}} \qquad \text{Matrix Elements} \qquad A_{i}$$

Calculating Nucleon Charges

$$\Gamma^2 = \sum_i A_i^* A_i e^{-E_i \tau} \qquad \Gamma^3 = \sum_{i,j} A_i^* A_j \langle N_i | O | N_j \rangle e^{-E_i t} e^{-E_j (\tau - t)}$$

$$\frac{\Gamma^3}{\Gamma^2} = \frac{\langle \Omega | \overline{N} A_{\mu} N | \Omega \rangle}{\langle \Omega | \overline{N} N | \Omega \rangle} \to \langle N(p_f) | A_{\mu} (Q^2) | N(p_i) \rangle \to \boldsymbol{g}_A$$

 $N\pi$: Amplitudes A_i for local N fall as 1/V for each particle

Excited states in correlation functions

Challenge: To get the matrix elements within ground state of hadrons (nucleons), the contributions of all excited states must be removed.

- Which excited states make significant contributions to a given matrix element?
- What are their energies in a finite box?

 $N\pi$: Amplitudes A_i for local N fall as 1/V for each particle

But excited-state matrix elements are enhanced

- Axial Form Factors must satisfy PCAC relation between them
 - Need to include $N(\vec{p})\pi(-\vec{p})$ states to satisfy PCAC
 - $\langle \Omega | N(\tau) \mathcal{A}_4(t) \overline{N}(0) | \Omega \rangle$ has very large ESC
 - Used $\langle \Omega | N A_4 \overline{N} | \Omega \rangle$ to include $N\pi$ state. Data-driven method

- χ PT predicts large contributions from $N\pi$ state in
 - nEDM from Θ -term
 - The pion-nucleon sigma term $\sigma_{\pi N} = m_{ud} g_S^{u+d}$

PCAC & 2 ways of extracting isovector g_A^{u-d}

Spectrum from Γ^2

 $N\pi$ included in fits (via A_4 or priors)

 G_A , \tilde{G}_P , G_P do not satisfy PCAC

 G_A , \tilde{G}_P , G_P satisfy PCAC

Operator mixing calculation in RI-sMOM

Calculated the 3×3 flavor (u, d, s) mixing matrices for 2+1-flavor theory in **RI-sMOM:** $g_{\Gamma}^{f} = \sum_{f'} Z_{\Gamma}^{ff'} g_{\Gamma}^{f'}|_{\text{bare}}$

Landau gauge fixed quark propagators using momentum source with $p \propto (1,1,1,1)$

$$\left(Z_{\Gamma}^{-1}\right)^{ff'} = \sum_{f'} \frac{1}{Z_{\psi}^{f}} \operatorname{Tr}\left[\left(*^{\delta} \times \delta^{ff'} + \delta^{ff'}\right)\right]$$

Projected amputated Green's function $Tr[(..)\mathbb{P}] \equiv \Lambda_{\Gamma}^{PA}$

 $\mathbb{P}(p',p)$

Using Vector Ward Identity (VWI): $g_V Z_V = 1$ - with g_V from separate nucleon matrix element calculation

Z₁ method:
$$Z_{\psi}(p) \equiv \frac{i}{12p^2} \operatorname{Tr}[S^{-1}(p)p \cdot \gamma]$$

Z₂ method: $Z_{\psi}^{\text{VWI}}(p) \equiv \Lambda_V^{\text{PA}}(p)/g_V$

Z_V from methods Z_1, Z_2

- $Z_V|_{\mathbf{Z}_1}$ and $Z_V|_{\mathbf{Z}_2} (= 1/g_V)$ have different M_{π}^{val} and *a* dependence
- $g_V \times Z_V|_{\mathbf{Z}_1}$ deviates from VWI (=1) at large quark mass, but VWI restored in the continuum limit
- To study the systematic effect in two different methods, $\{Z_1, Z_2\}$ we chiral-continuum extrapolate $g_{\Gamma}|_{Z_1}$ and $g_{\Gamma}|_{Z_2}$, separately, and compare the results.

Intrinsic quark's spin contribution to proton spin

gauge invariant decomposition of the proton spin is given by

$$\frac{1}{2} = \sum_{\{u,d,s,c\}} \left(\frac{1}{2}\Delta q + L_q\right) + J_g$$

$$S_P^q = \sum_q S_q \equiv \sum_q \frac{\Delta q}{2} \equiv 0.5 \sum_q g_A^q$$

$$g_A^q \qquad g_A^q = \left\langle N(p_i) \middle| Z_A A_\mu^q(0) \middle| N(p_i) \right\rangle$$

[X. Ji, PRL 78 (1997) 610]

LANL (PNDME) result (PRD 98 (2018) 094512):

 $0.5\sum_{q} g_{A}^{q} = (0.777(39) - 0.438(35) - 0.053(8))/2 = 0.143(31)(36)$

Compass result $0.13 \le \sum_q S_q \equiv 0.5 \sum_q g_A^q \le 0.18$

FD axial charges

LANL (PNDME) result (PRD 98 (2018) 094512):

$$0.5\sum_{q} g_{A}^{q} = (0.777(39) - 0.438(35) - 0.053(8))/2 = 0.143(31)(36)$$

New result

$$0.5\sum_{q} g_{A}^{q} = (0.784(22) - [0.41 - 0.46] - [0.054 - 0.069])/2$$

Compass result $0.13 \le \sum_q S_q \equiv 0.5 \sum_q g_A^q \le 0.18$

$g_T^{u,d,s,c}$: Contribution of the quark EDM to neutron EDM

 M_2 (GeV)

PRD 98 (2018) 091501

 $g_T^d = -0.194(10)(20)$ $q_T^s = -0.0016(12)$

 g_S^{u-d} : novel scalar interaction measured in neutron decay $g_S^{u,d,s,c}$: flavor independent interactions (dark matter) g_S^{u+d} : rate of change of nucleon mass with *u,d* quark mass $g_S^{u,d}$: Excited-state effects are large and results very sensitive to $N\pi / N\pi\pi$ states

Sigma terms

The pion-nucleon sigma term:

Resolving tension between Lattice QCD and Phenomenology

$$\sigma_{\pi N} \equiv m_{ud} g_S^{u+d} \equiv m_{ud} \langle N \big| \bar{u}u + \bar{d}d \big| N \rangle$$

FLAG Reports 2019, 2021:

- Lattice results ~40 MeV
- Phenomenology favors ~60 MeV

Post FLAG 2021 results

BMW (arXiv:2007.03319) $\sigma_{\pi N} = 37.4(5.1)$ MeV (FH) RQCD (JHEP 05 (2023) 035) $\sigma_{\pi N} = 43.9(4.7)$ MeV (FH) Mainz (PRL 131 (2023) 261902) $\sigma_{\pi N} = 43.7(3.6)$ MeV (FH) ETM (PRD **102**, 054517) $\sigma_{\pi N} = 41.6(3.8)$ MeV (Direct)

LANL Results: PRL 127 (2021) 242002; e-Print: 2105.12095

- Without including $N(\vec{k})\pi(-\vec{k})$ and $N(0)\pi(\vec{k})\pi(-\vec{k})$ states: = 41.9 (4.9) MeV
- Including $N(\vec{k})\pi(-\vec{k})$ and $N(0)\pi(\vec{k})\pi(-\vec{k})$ states:

= 59.6 (7.4) MeV

Future

- Brute force: increase statistics to get to larger τ
 - Two $M_{\pi} = 135$ HISQ ensembles
- Variational basis of states including $N\pi$ to get results from smaller τ

Acknowledgements

- MILC collaboration for providing the 2+1+1-flavor HISQ lattices.
- The calculations used the CHROMA software suite.
- DOE HEP for support
- For computer allocations we thank
- DOE NERSC through ERDCAP
- DOE INCITE project hep133 @OLCF
- USQCD collaboration
- Institutional Computing at LANL