Nucleon axial, tensor, and scalar charges and σ -terms from lattice QCD

Speaker: Christos Iona

with C. Alexandrou, S. Bacchio, G. Koutsou, Y. Li, G. Spanoudes

• To extract the nucleon charges we use three- and two-point correlation functions:

$$C^{\mu}(x_s; x_{ins}) = \langle \mathcal{J}(x_s) \mathcal{O}^{\mu}(x_{ins}) \bar{\mathcal{J}}(0) \rangle$$
$$C(x_s) = \langle \mathcal{J}(x_s) \bar{\mathcal{J}}(0) \rangle$$

• There are both connected and disconnected contributions to the nucleon three-point function.

• To extract the nucleon charges we use three- and two-point correlation functions:

$$C^{\mu}(x_s; x_{ins}) = \langle \mathcal{J}(x_s) \mathcal{O}^{\mu}(x_{ins}) \bar{\mathcal{J}}(0) \rangle$$
$$C(x_s) = \langle \mathcal{J}(x_s) \bar{\mathcal{J}}(0) \rangle$$

• There are both connected and disconnected contributions to the nucleon three-point function.

Connected (left) and disconnected (right) contributions of a baryon three-point function.

• We can manipulate the three-point function and at the limit of large time, where $(t_s - t_{ins}) \rightarrow \infty$ and $t_{ins} \rightarrow \infty$ write it as: $C^{\mu}(\vec{p'}, t_s; \vec{p_1}, t_{ins}) \rightarrow \langle \mathcal{J} | H(\vec{p'}) \rangle \langle H(\vec{p_1}) | \bar{\mathcal{J}} \rangle \times \langle H(\vec{p'}) | \mathcal{O}^{\mu} | H(\vec{p'} - \vec{p_1}) \rangle e^{-E(\vec{p'})(t_s - t_{ins})} e^{-E(\vec{p_1})t_{ins}}$

• Similarly, the two-point function can be written as:

$$C(\vec{p}, t_s) \to \langle \mathcal{J} | H(\vec{p}) \rangle \langle H(\vec{p}) | \bar{\mathcal{J}} \rangle e^{-E(\vec{p})t_s}$$

• To isolate the matrix element from the overlap terms and the exponentials, we take the ratio of the three-point function with two-point functions:

$$R^{\mu}(\vec{p'}, t_s; \vec{p}_1, t_{ins}) = \frac{C^{\mu}(\vec{p'}, t_s; \vec{p}_1, t_{ins})}{C(\vec{p'}, t_s)} \times \sqrt{\frac{C(\vec{p}_1, t_s - t_{ins})C(\vec{p'}, t_{ins})C(\vec{p'}, t_s)}{C(\vec{p'}, t_s - t_{ins})C(\vec{p}_1, t_{ins})C(\vec{p}_1, t_s)}}$$

• We can manipulate the three-point function and at the limit of large time, where $(t_s - t_{ins}) \rightarrow \infty$ and $t_{ins} \rightarrow \infty$ write it as: $C^{\mu}(\vec{p'}, t_s; \vec{p_1}, t_{ins}) \rightarrow \langle \mathcal{J} | H(\vec{p'}) \rangle \langle H(\vec{p_1}) | \bar{\mathcal{J}} \rangle \times \langle H(\vec{p'}) | \mathcal{O}^{\mu} | H(\vec{p'} - \vec{p_1}) \rangle e^{-E(\vec{p'})(t_s - t_{ins})} e^{-E(\vec{p_1})t_{ins}}$

• Similarly, the two-point function can be written as:

$$C(\vec{p}, t_s) \to \langle \mathcal{J} | H(\vec{p}) \rangle \langle H(\vec{p}) | \bar{\mathcal{J}} \rangle e^{-E(\vec{p})t_s}$$

• To isolate the matrix element from the overlap terms and the exponentials, we take the ratio of the three-point function with two-point functions:

$$R^{\mu}(\vec{p'}, t_s; \vec{p}_1, t_{ins}) = \frac{C^{\mu}(\vec{p'}, t_s; \vec{p}_1, t_{ins})}{C(\vec{p'}, t_s)} \times \sqrt{\frac{C(\vec{p}_1, t_s - t_{ins})C(\vec{p'}, t_{ins})C(\vec{p'}, t_s)}{C(\vec{p'}, t_s - t_{ins})C(\vec{p}_1, t_{ins})C(\vec{p}_1, t_s)}}$$

• We can manipulate the three-point function and at the limit of large time, where $(t_s - t_{ins}) \rightarrow \infty$ and $t_{ins} \rightarrow \infty$ write it as: $C^{\mu}(\vec{p'}, t_s; \vec{p_1}, t_{ins}) \rightarrow \langle \mathcal{J} | H(\vec{p'}) \rangle \langle H(\vec{p_1}) | \bar{\mathcal{J}} \rangle \times \langle H(\vec{p'}) | \mathcal{O}^{\mu} | H(\vec{p'} - \vec{p_1}) \rangle e^{-E(\vec{p'})(t_s - t_{ins})} e^{-E(\vec{p_1})t_{ins}}$

• Similarly, the two-point function can be written as:

$$C(\vec{p}, t_s) \to \langle \mathcal{J} | H(\vec{p}) \rangle \langle H(\vec{p}) | \bar{\mathcal{J}} \rangle e^{-E(\vec{p})t_s}$$

• To isolate the matrix element from the overlap terms and the exponentials, we take the ratio of the three-point function with two-point functions:

$$R^{\mu}(\vec{p'}, t_s; \vec{p_1}, t_{ins}) = \frac{C^{\mu}(\vec{p'}, t_s; \vec{p_1}, t_{ins})}{C(\vec{p'}, t_s)} \times \sqrt{\frac{C(\vec{p_1}, t_s - t_{ins})C(\vec{p'}, t_{ins})C(\vec{p'}, t_s)}{C(\vec{p'}, t_s - t_{ins})C(\vec{p_1}, t_{ins})C(\vec{p_1}, t_s)}}$$

• The spectral decomposition of the two- and three-point functions are given respectively by:

$$\begin{split} C(\Gamma_0, \vec{p}; t_s) &= \sum_i^\infty c_i(\vec{p}) e^{-E_i(\vec{p}) t_s} \ \text{ and } \\ C^\mu(\Gamma_k, \vec{q}; t_s, t_{ins}) &= \sum_{i,j}^\infty A^{i,j}_\mu(\Gamma_k, \vec{q}) e^{-E_i(\vec{0})(t_s - t_{ins}) - E_j(\vec{q}) t_{ins}} \end{split}$$

• The nucleon charges are obtained at zero momentum transfer and the ratio at large times gives:

$$R^{\mu}_{A,S,T}(t_s, t_{ins}) = \frac{C^{\mu}(t_s, t_{ins})}{C(t_s)} \to g_{A,S,T}$$

• To extract the charge from the data we use:

$$g_{A,S,T} = \frac{A^{0,0}_{\mu}(\vec{0})_{A,S,T}}{c_0(\vec{0})}$$

• The spectral decomposition of the two- and three-point functions are given respectively by:

$$\begin{split} C(\Gamma_0, \vec{p}; t_s) &= \sum_i^\infty c_i(\vec{p}) e^{-E_i(\vec{p}) t_s} \text{ and} \\ C^\mu(\Gamma_k, \vec{q}; t_s, t_{ins}) &= \sum_{i,j}^\infty A^{i,j}_\mu(\Gamma_k, \vec{q}) e^{-E_i(\vec{0})(t_s - t_{ins}) - E_j(\vec{q}) t_{ins}} \end{split}$$

• The nucleon charges are obtained at zero momentum transfer and the ratio at large times gives:

$$R^{\mu}_{A,S,T}(t_s, t_{ins}) = \frac{C^{\mu}(t_s, t_{ins})}{C(t_s)} \to g_{A,S,T}$$

• To extract the charge from the data we use:

$$g_{A,S,T} = \frac{A^{0,0}_{\mu}(\vec{0})_{A,S,T}}{c_0(\vec{0})}$$

• The spectral decomposition of the two- and three-point functions are given respectively by:

$$\begin{split} C(\Gamma_0, \vec{p}; t_s) &= \sum_i^\infty c_i(\vec{p}) e^{-E_i(\vec{p}) t_s} \text{ and } \\ C^\mu(\Gamma_k, \vec{q}; t_s, t_{ins}) &= \sum_{i,j}^\infty A^{i,j}_\mu(\Gamma_k, \vec{q}) e^{-E_i(\vec{0})(t_s - t_{ins}) - E_j(\vec{q}) t_{ins}} \end{split}$$

• The nucleon charges are obtained at zero momentum transfer and the ratio at large times gives:

$$R^{\mu}_{A,S,T}(t_s, t_{ins}) = \frac{C^{\mu}(t_s, t_{ins})}{C(t_s)} \to g_{A,S,T}$$

• To extract the charge from the data we use:

$$g_{A,S,T} = \frac{A^{0,0}_{\mu}(\vec{0})_{A,S,T}}{c_0(\vec{0})}$$

- Since the optimal fit range in t_s and t_{ins} may vary for each case, we explore a wide parameter space in the fitting ranges.
- From each combination of the varied parameters, we obtain a different result. We average the results using the Akaike Information Criterion (AIC).
- For each fit i, we associate a weight w_i , which we define as:

$$\log(w_i) = -\frac{\chi_i^2}{2} + N_{\text{dof},i}$$

• We use the weights to define the probability:

$$p_i = \frac{w_i}{Z}$$
 with $Z = \sum_i w_i$

• We define the *Model Average (MA)* value of an observable *O* as:

$$\langle \mathcal{O} \rangle_{MA} = \sum_{i} \bar{\mathcal{O}}_{i} p_{i} \text{ with } \sigma_{MA}^{2} = \sum_{i} (\sigma_{i}^{2} + \bar{\mathcal{O}}_{i}^{2}) p_{i} - \langle \mathcal{O} \rangle_{MA}^{2}$$

- Since the optimal fit range in t_s and t_{ins} may vary for each case, we explore a wide parameter space in the fitting ranges.
- From each combination of the varied parameters, we obtain a different result. We average the results using the Akaike Information Criterion (AIC).
- For each fit i, we associate a weight w_i , which we define as:

$$\log(w_i) = -\frac{\chi_i^2}{2} + N_{\text{dof},i}$$

• We use the weights to define the probability:

$$p_i = \frac{w_i}{Z}$$
 with $Z = \sum_i w_i$

• We define the *Model Average (MA)* value of an observable \mathcal{O} as:

$$\langle \mathcal{O} \rangle_{MA} = \sum_{i} \bar{\mathcal{O}}_{i} p_{i} \text{ with } \sigma_{MA}^{2} = \sum_{i} (\sigma_{i}^{2} + \bar{\mathcal{O}}_{i}^{2}) p_{i} - \langle \mathcal{O} \rangle_{MA}^{2}$$

- Since the optimal fit range in t_s and t_{ins} may vary for each case, we explore a wide parameter space in the fitting ranges.
- From each combination of the varied parameters, we obtain a different result. We average the results using the Akaike Information Criterion (AIC).
- For each fit i, we associate a weight w_i , which we define as:

$$\log(w_i) = -\frac{\chi_i^2}{2} + N_{\text{dof},i}$$

• We use the weights to define the probability:

$$p_i = \frac{w_i}{Z}$$
 with $Z = \sum_i w_i$

• We define the *Model Average (MA)* value of an observable *O* as:

$$\langle \mathcal{O} \rangle_{MA} = \sum_{i} \bar{\mathcal{O}}_{i} p_{i} \text{ with } \sigma_{MA}^{2} = \sum_{i} (\sigma_{i}^{2} + \bar{\mathcal{O}}_{i}^{2}) p_{i} - \langle \mathcal{O} \rangle_{MA}^{2}$$

- Since the optimal fit range in t_s and t_{ins} may vary for each case, we explore a wide parameter space in the fitting ranges.
- From each combination of the varied parameters, we obtain a different result. We average the results using the Akaike Information Criterion (AIC).
- For each fit i, we associate a weight w_i , which we define as:

$$\log(w_i) = -\frac{\chi_i^2}{2} + N_{\mathsf{dof},i}$$

• We use the weights to define the probability:

$$p_i = \frac{w_i}{Z}$$
 with $Z = \sum_i w_i$

• We define the *Model Average (MA)* value of an observable \mathcal{O} as:

$$\langle \mathcal{O} \rangle_{MA} = \sum_{i} \bar{\mathcal{O}}_{i} p_{i} \text{ with } \sigma_{MA}^{2} = \sum_{i} (\sigma_{i}^{2} + \bar{\mathcal{O}}_{i}^{2}) p_{i} - \langle \mathcal{O} \rangle_{MA}^{2}$$

- Since the optimal fit range in t_s and t_{ins} may vary for each case, we explore a wide parameter space in the fitting ranges.
- From each combination of the varied parameters, we obtain a different result. We average the results using the Akaike Information Criterion (AIC).
- For each fit i, we associate a weight w_i , which we define as:

$$\log(w_i) = -\frac{\chi_i^2}{2} + N_{\mathsf{dof},i}$$

• We use the weights to define the probability:

$$p_i = rac{w_i}{Z}$$
 with $Z = \sum_i w_i$

• We define the *Model Average (MA)* value of an observable \mathcal{O} as:

$$\langle \mathcal{O} \rangle_{MA} = \sum_i \bar{\mathcal{O}}_i p_i \quad \text{with} \quad \sigma_{MA}^2 = \sum_i (\sigma_i^2 + \bar{\mathcal{O}}_i^2) p_i - \langle \mathcal{O} \rangle_{MA}^2$$

The Data

• Our data consists of two- and three-point functions from three $N_f = 2 + 1 + 1$ twisted mass fermion ensembles at the physical point, generated by the *Extended Twisted Mass Collaboration* (*ETMC*).

inc).					cC211.060.80				406 configurations				
	cB	3211.072.	64		400 configurations				490 configurations				
	749	configurations			t_a/a t_a [fm] n_{ama}				t_s/a	t_s [fm]	n_{src}		
1	t/a	t [fm]	$\frac{1}{1}$		6	0.41	1		8	0.46	1		
	0	0.64	1		0	0.41	2		10	0.57	2		
	0	0.04	1		0	0.55	2		12	0.68	4		
	10	0.80	2		10	0.69	4		14	0.80	8		
	12	0.96	5		12	0.82	10		16	0.00	16		
	14	1.12	10		14	0.96	22		10	1 02	22		
	16	1.28	32		16	1.10	48		10	1.05	52		
	18	1.44	112		18	1.24	45		20	1.14	64		
	20	1 60	128		20	1 37	116		22	1.25	16		
	20	1.00	477		20	1 51	246		24	1.37	32		
Nucleon 2pt 477					22	1.51	240		26	1.48	64		
L					Nucleon 2pt 650				Nucleon 2pt 480				

	(1.072.64	1	cC211.060.80				cD211.054.96				
	749	ifiguratio	ons	400 configurations				496 configurations				
Flavour	N_{defl}	N_r	N_{Had}	N_{vect}	N_{defl}	N_r	N_{Had}	N_{vect}	N_{defl}	N_r	N_{Had}	N_{vect}
Light	200	1	512	6144	450	1	512	6144	0	8	512	49152
Strange	0	2	512	12288	0	4	512	24576	0	4	512	24576
Charm	0	12	32	4608	0	1	512	6144	0	1	512	6144

Statistics used for the connected two- and three-point functions (top) and disconnected loops (bottom)

Axial Charge

• The nucleon isovector axial charge, g_A^{u-d} , governs the rate of weak decay of neutrons into protons.

• The flavor diagonal g_A^f , are related to the intrinsic spin carried by the quarks in the nucleon.

• The isovector axial-vector operator is given by:

$$\mathcal{O}_A^{u-d} \equiv A_\mu = \bar{u}\gamma_\mu\gamma_5 u - \bar{d}\gamma_\mu\gamma_5 d$$

• The nucleon isovector axial charge, g_A^{u-d} , governs the rate of weak decay of neutrons into protons.

• The flavor diagonal g_A^f , are related to the intrinsic spin carried by the quarks in the nucleon.

• The isovector axial-vector operator is given by:

$$\mathcal{O}_A^{u-d} \equiv A_\mu = \bar{u}\gamma_\mu\gamma_5 u - \bar{d}\gamma_\mu\gamma_5 d$$

• The nucleon isovector axial charge, g_A^{u-d} , governs the rate of weak decay of neutrons into protons.

• The flavor diagonal g_A^f , are related to the intrinsic spin carried by the quarks in the nucleon.

• The isovector axial-vector operator is given by:

$$\mathcal{O}_A^{u-d} \equiv A_\mu = \bar{u}\gamma_\mu\gamma_5 u - \bar{d}\gamma_\mu\gamma_5 d$$

See G. Koutsou, after the lunch break for more details.

Analysis of the isovector axial charge g_A^{u-d} for all three ensembles.

Christos Iona

The continuum limit of the isovector axial charge g_A^{u-d} .

Axial Charge - Preliminary Results

Comparison of the results of this work (ETM24) with previous ETMC results and other lattice works.

Axial Charge - Preliminary Results

Continuum limit extrapolations for single flavor axial charges.

• Scalar charges are only known poorly from phenomenology.

- They can put limits on the existence of BSM interactions and are relevant in dark matter searches.
- The isovector scalar charge g_S^{u-d} measures the proportionality constant between the neutron-proton mass splitting and the up and down quark mass splitting.
- The nucleon matrix element of the single-flavor scalar operator g_S^f is directly connected to the quark content of the nucleon.
- We define the nucleon $\sigma\text{-terms}$ as

$$\sigma^f = m_f \left< N |\bar{q}_f q_f| N \right> \ , \ \ \sigma^{u+d} = m_{ud} \left< N |\bar{u}u + \bar{d}d| N \right>$$

- Scalar charges are only known poorly from phenomenology.
- They can put limits on the existence of BSM interactions and are relevant in dark matter searches.
- The isovector scalar charge g_S^{u-d} measures the proportionality constant between the neutron-proton mass splitting and the up and down quark mass splitting.
- The nucleon matrix element of the single-flavor scalar operator g_S^f is directly connected to the quark content of the nucleon.
- We define the nucleon $\sigma\text{-terms}$ as

$$\sigma^f = m_f \left< N |\bar{q}_f q_f| N \right> \ , \ \ \sigma^{u+d} = m_{ud} \left< N |\bar{u}u + \bar{d}d| N \right>$$

- Scalar charges are only known poorly from phenomenology.
- They can put limits on the existence of BSM interactions and are relevant in dark matter searches.
- The isovector scalar charge g_S^{u-d} measures the proportionality constant between the neutron-proton mass splitting and the up and down quark mass splitting.
- The nucleon matrix element of the single-flavor scalar operator g_S^f is directly connected to the quark content of the nucleon.
- We define the nucleon $\sigma\text{-terms}$ as

$$\sigma^f = m_f \left< N |\bar{q}_f q_f| N \right> \ , \ \ \sigma^{u+d} = m_{ud} \left< N |\bar{u}u + \bar{d}d| N \right>$$

- Scalar charges are only known poorly from phenomenology.
- They can put limits on the existence of BSM interactions and are relevant in dark matter searches.
- The isovector scalar charge g_S^{u-d} measures the proportionality constant between the neutron-proton mass splitting and the up and down quark mass splitting.
- The nucleon matrix element of the single-flavor scalar operator g_S^f is directly connected to the quark content of the nucleon.

• We define the nucleon σ -terms as

$$\sigma^f = m_f \left< N | \bar{q}_f q_f | N \right> \ , \ \ \sigma^{u+d} = m_{ud} \left< N | \bar{u}u + \bar{d}d | N \right>$$

- Scalar charges are only known poorly from phenomenology.
- They can put limits on the existence of BSM interactions and are relevant in dark matter searches.
- The isovector scalar charge g_S^{u-d} measures the proportionality constant between the neutron-proton mass splitting and the up and down quark mass splitting.
- The nucleon matrix element of the single-flavor scalar operator g_S^f is directly connected to the quark content of the nucleon.
- We define the nucleon $\sigma\text{-terms}$ as

$$\sigma^f = m_f \left< N | \bar{q}_f q_f | N \right> \ , \ \ \sigma^{u+d} = m_{ud} \left< N | \bar{u}u + \bar{d}d | N \right>$$

σ -terms - Preliminary Results

Tensor Charge

- The tensor charge is the first Mellin moment of the transversity parton distribution function (PDF).
- The flavor-diagonal tensor charge plays a crucial role in determining the contribution of quark electric dipole moments to the neutron electric dipole moment, which indicates CP violation.
- Like the scalar charges, tensor charges are only known poorly from phenomenology.
- They can put limits on the existence of BSM interactions with tensor structures and are also relevant in dark matter searches.

- The tensor charge is the first Mellin moment of the transversity parton distribution function (PDF).
- The flavor-diagonal tensor charge plays a crucial role in determining the contribution of quark electric dipole moments to the neutron electric dipole moment, which indicates CP violation.
- Like the scalar charges, tensor charges are only known poorly from phenomenology.
- They can put limits on the existence of BSM interactions with tensor structures and are also relevant in dark matter searches.

- The tensor charge is the first Mellin moment of the transversity parton distribution function (PDF).
- The flavor-diagonal tensor charge plays a crucial role in determining the contribution of quark electric dipole moments to the neutron electric dipole moment, which indicates CP violation.
- Like the scalar charges, tensor charges are only known poorly from phenomenology.
- They can put limits on the existence of BSM interactions with tensor structures and are also relevant in dark matter searches.

- The tensor charge is the first Mellin moment of the transversity parton distribution function (PDF).
- The flavor-diagonal tensor charge plays a crucial role in determining the contribution of quark electric dipole moments to the neutron electric dipole moment, which indicates CP violation.
- Like the scalar charges, tensor charges are only known poorly from phenomenology.
- They can put limits on the existence of BSM interactions with tensor structures and are also relevant in dark matter searches.

Tensor Charge - Preliminary Results

Comparison of the results of this work (ETM24) with previous ETMC results and other lattice works.

Tensor Charge - Preliminary Results

Continuum limit extrapolations for single flavor tensor charges.

Tensor Charge - Preliminary Results

Comparison of the tensor single flavor results of this work (ETM24) with previous ETMC results and other lattice works.

• In this work we used three $N_f = 2 + 1 + 1$ physical point ensembles to calculate the nucleon axial, scalar and tensor charges as well as the nucleon σ -terms.

• Our results are in agreement with other lattice works and with the experimental value the case of g_A^{u-d} .

• Future analysis will include a fourth ensemble at smaller value of lattice spacing.

• In this work we used three $N_f = 2 + 1 + 1$ physical point ensembles to calculate the nucleon axial, scalar and tensor charges as well as the nucleon σ -terms.

• Our results are in agreement with other lattice works and with the experimental value the case of g_A^{u-d} .

• Future analysis will include a fourth ensemble at smaller value of lattice spacing.

• In this work we used three $N_f = 2 + 1 + 1$ physical point ensembles to calculate the nucleon axial, scalar and tensor charges as well as the nucleon σ -terms.

• Our results are in agreement with other lattice works and with the experimental value the case of g_A^{u-d} .

• Future analysis will include a fourth ensemble at smaller value of lattice spacing.

Nucleon axial, tensor, and scalar charges and $\sigma\text{-terms}$ from lattice QCD

Thank you for your attention!

Support is acknowledged from the project EXCELLENCE/0421/0043 "3D-Nucleon," co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation.