Update on pion scalar radii with $N_f = 2 + 1$ Clover-improved Wilson fermions

Konstantin Ottnad^a, Georg von Hippel^a

^a Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

41st International Symposium on Lattice Field Theory University of Liverpool, July 28 – August 3, 2024

Introduction	Setup	FF analysis	Physical extrapolation	Model averages	Summary & Outlook
•	000	0000		000	O
Introducti	on				

Introduction

The pion scalar form factor and scalar radii with $N_f = 2 + 1$ quark flavors are given by

$$F_{S}^{\pi,f}(Q^{2}) = \langle \pi(p_{f}) | S^{f} | \pi(p_{i}) \rangle \rangle, \qquad \langle r_{S}^{2} \rangle_{\pi}^{f} = \frac{-6}{F_{S}^{\pi,f}(0)} \cdot \left. \frac{dF_{S}^{\pi,f}(Q^{2})}{dQ^{2}} \right|_{Q^{2}=0},$$

where for f = I, 0, 8 we have

$$\begin{split} \mathcal{S}_{l} &= 2m_{l}\overline{l}l \qquad \rightarrow \qquad \mathcal{F}_{S}^{\pi,l}(Q^{2}) \quad (\text{light}) \\ \mathcal{S}_{8} &= 2m_{l}\overline{l}l - 2m_{s}\overline{s}s \qquad \rightarrow \qquad \mathcal{F}_{S}^{\pi,8}(Q^{2}) \quad (\text{octet}) \\ \mathcal{S}_{0} &= 2m_{l}\overline{l}l + m_{s}\overline{s}s \qquad \rightarrow \qquad \mathcal{F}_{S}^{\pi,0}(Q^{2}) \quad (\text{singlet}) \end{split}$$

They provide insight into the low-energy regime of QCD:

- At NLO in $SU(2) \chi PT \langle r_S^2 \rangle_{\pi}^{\prime}$ is parametrized by a single LEC \overline{I}_4 . Annals Phys. 158, 142 (1984)
- At NLO in $SU(3) \chi PT \langle r_S^2 \rangle_{\pi}^{0,8,l}$ give access to f_0 , L_4 and L_5 . Nucl. Phys. B250 (1985) 517-538
- A few (mostly older) lattice calculations exist for SU(2); very little is known for SU(3). PRD 80 (2009) 034508 PRD 89 (2014) 9, 094503 PRD 93 (2016) 5, 054503 PRD 105, 054502 (2022)
- Arguably no calculation with controlled systematics; e.g. radii from linear slope between two momenta.
- $F_S^{\pi,f}(q^2)$ computationally demanding \rightarrow significant quark-disconnected contributions.

Computational setup part I

Contributions from quark-connected and disconnected three-point functions:

- Sequential sink method for three-point functions: $1 \text{ fm} \lesssim t_{\text{sep}} \lesssim 3.5 \text{ fm}$ and $\mathbf{p}_f \in \{(0,0,0), (1,0,0)\}$.
- Truncated solver method → speedup of 2-5. Phys.Rev. D91 (2015) 11, 114511
- Point-to-all forward propagators re-used for two-point functions.
- O(500) additional two-point functions for 2+1 disconnected diagrams per config.
- On periodic BC boxes:
 - Sources randomly distributed; 8 sources for quark-connected three-point functions per config.
- On open BC boxes:
 - Source setup symmetric around $T/2 \Rightarrow 4+4$ sources for three-point functions at each t_{sep} .
 - Additional two-point function sources in bulk, i.e. $t_i \in \left[t_{ex}^{oBC}, T t_{ex}^{oBC}\right]$, $t_{ex}^{oBC} = 1.75...2.5 \text{ fm}$.

<u> </u>					
	000	0000	0000	000	
Introduction	Setup	FF analysis	Physical extrapolation	Model averages	Summary & Outlook

Computational setup part II

Quark-disconnected loops (here: $\mathcal{O}_{f}(\mathbf{x},t) = \mathcal{S}_{l,s}(\mathbf{x},t)$)

$$\mathcal{L}_{\mathcal{O}_f}(\mathbf{p},t) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \langle \mathcal{O}_f(\mathbf{x},t) \rangle_F,$$

are computed using stochastic all-to-all propagators combining:

1 the one-end trick / frequency splitting to compute $L_1 - L_2$, ..., $L_{n-1} - L_n$, for $m_1 < m_2 < ... < m_n$ EPJ C58, 261 (2008) EPJ C79, 586 (2019)

2) with the hopping parameter expansion + hierarchical probing for the heaviest quark n.

PRD 89, 094503 (2014) arXiv:1302.4018 [hep-lat]

- Loops at gauge noise for any $\mathcal{O}_f(\mathbf{x}, t)$
- Statistics for 2+1 diagrams remains limited by two-point functions measurements.
- For periodic BC: foward + backward averaging for all sources used for two-point functions.
- For open BC: Stay away from boundary!
- \Rightarrow 2+1 statistics may get severely reduced at larger values of $t_{\rm sep}$, depending on T and $t_{\rm ex}^{\rm OBC}$.

Introduction	Setup	FF analysis	Physical extrapolation	Model averages	Summary & Outlook
0	00●	0000		000	0

ID ^{BC}	Traj.	a/fm	T/a	L/a	$M_{\pi}/{ m MeV}$	$M_{\pi}L$	$N_{ m conf}$	$N_{ m meas}^{ m 3pt}$	$N_{ m meas}^{ m (2+1)pt}$
C101°	tr[<i>M</i>]	0.086	96	48	225	4.68	2000	16000	800000
C102°	$m_{\rm s}^{\rm phys}$		96	48	228	4.75	1500	12000	600000
N101°	tr[M]		128	48	283	5.89	1596	12768	893760
H102°	tr[<i>M</i>]		96	32	358	4.97	2037	16296	1140720
D450 ^p	tr[<i>M</i>]	0.076	128	64	219	5.36	1028	12000	526336
D451 ^p	$m_s^{\rm phys}$		128	64	218	5.35	1500	8224	768000
N451 ^p	tr[<i>M</i>]		128	48	289	5.32	1011	8088	517632
N452 ^p	tr[<i>M</i>]		128	48	354	6.50	1000	8000	512000
S400°	tr[<i>M</i>]		128	32	356	4.37	1001	8008	448448
E250 ^p	both	0.064	192	96	132	4.07	1000	8000	512000
D200°	tr[<i>M</i>]		128	64	204	4.22	2000	16000	1120000
D201°	$m_s^{\rm phys}$		128	64	204	4.21	1078	8624	603680
N200°	tr[M]		128	48	287	4.45	1712	13696	958720
N203°	tr[<i>M</i>]		128	48	349	5.40	1543	12344	864080
E300°	tr[<i>M</i>]	0.049	192	96	176	4.22	1139	9112	485973
J303°	tr[<i>M</i>]		192	64	260	4.17	1073	8584	600880

N_f = 2 + 1 flavors of non-perturbatively improved Wilson clover fermions provided by CLS. JHEP 1502 (2015) 043 Commun.Math.Phys. 97 (1985) PoS LATTICE2008 (2008) 049

• Production almost complete; ensembles only listed if they have reached target statistics.

- 13 Ensembles on tr[M] = const trajectory, 3 more on $m_s = m_s^{phys}$ trajectory.
 - \rightarrow J304 almost done, a few more $m_s = {
 m phys}$ ensembles available.

Introduction	Setup	FF analysis	Physical extrapolation	Model averages	Summary & Outlook
0	00●	0000		000	0
e					

ID ^{BC}	Traj.	a/fm	T/a	L/a	M_{π}/MeV	$M_{\pi}L$	$N_{ m conf}$	$N_{ m meas}^{ m 3pt}$	$N_{ m meas}^{ m (2+1)pt}$
C101°	tr[<i>M</i>]	0.086	96	48	225	4.68	2000	16000	800000
C102°	$m_s^{\rm phys}$		96	48	228	4.75	1500	12000	600000
N101°	tr[<i>M</i>]		128	48	283	5.89	1596	12768	893760
$H102^{\circ}$	tr[<i>M</i>]		96	32	358	4.97	2037	16296	1140720
D450 ^p	tr[M]	0.076	128	64	219	5.36	1028	12000	526336
D451 ^p	$m_s^{\rm phys}$		128	64	218	5.35	1500	8224	768000
N451 ^p	tr[<i>M</i>]		128	48	289	5.32	1011	8088	517632
N452 ^p	tr[<i>M</i>]		128	48	354	6.50	1000	8000	512000
S400°	tr[<i>M</i>]		128	32	356	4.37	1001	8008	448448
E250 ^p	both	0.064	192	96	132	4.07	1000	8000	512000
D200°	tr[<i>M</i>]		128	64	204	4.22	2000	16000	1120000
D201°	$m_s^{\rm phys}$		128	64	204	4.21	1078	8624	603680
N200°	tr[<i>M</i>]		128	48	287	4.45	1712	13696	958720
N203°	tr[<i>M</i>]		128	48	349	5.40	1543	12344	864080
E300°	tr[<i>M</i>]	0.049	192	96	176	4.22	1139	9112	485973
J303°	tr[<i>M</i>]		192	64	260	4.17	1073	8584	600880

• Ensembles cover four values of the lattice spacing a

- $\bullet~$ Pion masses range from $\sim 130\,{\rm MeV}$ to $\sim 350\,{\rm MeV}$
- Many different physical volumes with $L \approx 2.4, ..., 6.1 \, \text{fm}, M_{\pi}L > 4$.
- Two very large and fine boxes at (near) physical quark mass and high momentum resolution.

Introduction	Setup	FF analysis	Physical extrapolation	Model averages	Summary & Outlook
0	00●	0000		000	0
e					

Ensemb	les
--------	-----

ID ^{BC}	Traj.	a/fm	T/a	L/a	$M_{\pi}/{ m MeV}$	$M_{\pi}L$	$N_{ m conf}$	$N_{ m meas}^{ m 3pt}$	$N_{ m meas}^{(2+1) m pt}$
C101°	tr[<i>M</i>]	0.086	96	48	225	4.68	2000	16000	800000
C102°	$m_s^{\rm phys}$		96	48	228	4.75	1500	12000	600000
N101°	tr[<i>M</i>]		128	48	283	5.89	1596	12768	893760
H102°	tr[<i>M</i>]		96	32	358	4.97	2037	16296	1140720
D450 ^p	tr[<i>M</i>]	0.076	128	64	219	5.36	1028	12000	526336
D451 ^p	$m_s^{\rm phys}$		128	64	218	5.35	1500	8224	768000
N451 ^p	tr[<i>M</i>]		128	48	289	5.32	1011	8088	517632
N452 ^p	tr[<i>M</i>]		128	48	354	6.50	1000	8000	512000
S400°	tr[M]		128	32	356	4.37	1001	8008	448448
E250 ^p	both	0.064	192	96	132	4.07	1000	8000	512000
D200°	tr[<i>M</i>]		128	64	204	4.22	2000	16000	1120000
D201°	$m_s^{\rm phys}$		128	64	204	4.21	1078	8624	603680
N200°	tr[<i>M</i>]		128	48	287	4.45	1712	13696	958720
N203°	tr[<i>M</i>]		128	48	349	5.40	1543	12344	864080
E300°	tr[<i>M</i>]	0.049	192	96	176	4.22	1139	9112	485973
J303°	tr[<i>M</i>]		192	64	260	4.17	1073	8584	600880

- Ensembles cover four values of the lattice spacing a
- $\bullet~$ Pion masses range from $\sim 130\,{\rm MeV}$ to $\sim 350\,{\rm MeV}$
- Many different physical volumes with $L \approx 2.4, ..., 6.1 \, \text{fm}, M_{\pi}L > 4$.
- Two very large and fine boxes at (near) physical quark mass and high momentum resolution.

Introduction O	Setup 00●	FF analysis 0000	Physical extrapolation	Model averages	Summary & Outlook 0
e					

Ensemb	les
--------	-----

ID ^{BC}	Traj.	a/fm	T/a	L/a	M_{π}/MeV	$M_{\pi}L$	$N_{ m conf}$	$N_{ m meas}^{ m 3pt}$	$N_{ m meas}^{ m (2+1)pt}$
C101°	tr[<i>M</i>]	0.086	96	48	225	4.68	2000	16000	800000
C102°	$m_s^{\rm phys}$		96	48	228	4.75	1500	12000	600000
N101°	tr[<i>M</i>]		128	48	283	5.89	1596	12768	893760
H102°	tr[<i>M</i>]		96	32	358	4.97	2037	16296	1140720
D450 ^p	tr[<i>M</i>]	0.076	128	64	219	5.36	1028	12000	526336
D451 ^p	$m_s^{\rm phys}$		128	64	218	5.35	1500	8224	768000
N451 ^p	tr[<i>M</i>]		128	48	289	5.32	1011	8088	517632
N452 ^p	tr[<i>M</i>]		128	48	354	6.50	1000	8000	512000
S400°	tr[M]		128	32	356	4.37	1001	8008	448448
E250 ^p	both	0.064	192	96	132	4.07	1000	8000	512000
D200°	tr[<i>M</i>]		128	64	204	4.22	2000	16000	1120000
D201°	$m_s^{\rm phys}$		128	64	204	4.21	1078	8624	603680
N200°	tr[<i>M</i>]		128	48	287	4.45	1712	13696	958720
N203°	tr[M]		128	48	349	5.40	1543	12344	864080
E300°	tr[<i>M</i>]	0.049	192	96	176	4.22	1139	9112	485973
J303°	tr[<i>M</i>]		192	64	260	4.17	1073	8584	600880

- Ensembles cover four values of the lattice spacing a
- ${\small \bullet}$ ${\rm ~Pion}$ masses range from ${\rm \sim 130\,MeV}$ to ${\rm \sim 350\,MeV}$
- Many different physical volumes with $L \approx 2.4, ..., 6.1 \, \text{fm}$, $M_{\pi}L > 4$.
- Two very large and fine boxes at (near) physical quark mass and high momentum resolution.

Ensemble					
0	000	0000	0000	000	0
Introduction	Setup	FF analysis	Physical extrapolation	Model averages	Summarv & Outlook

Ens	sem	ble	s

ID ^{BC}	Traj.	a/fm	T/a	L/a	M_{π}/MeV	$M_{\pi}L$	$N_{ m conf}$	$N_{ m meas}^{ m 3pt}$	$N_{ m meas}^{ m (2+1)pt}$
C101°	tr[M]	0.086	96	48	225	4.68	2000	16000	800000
C102°	$m_s^{\rm phys}$		96	48	228	4.75	1500	12000	600000
N101°	tr[<i>M</i>]		128	48	283	5.89	1596	12768	893760
$H102^{\circ}$	tr[<i>M</i>]		96	32	358	4.97	2037	16296	1140720
D450 ^p	tr[M]	0.076	128	64	219	5.36	1028	12000	526336
D451 ^p	$m_s^{\rm phys}$		128	64	218	5.35	1500	8224	768000
N451 ^p	tr[<i>M</i>]		128	48	289	5.32	1011	8088	517632
N452 ^p	tr[<i>M</i>]		128	48	354	6.50	1000	8000	512000
S400°	tr[M]		128	32	356	4.37	1001	8008	448448
E250 ^p	both	0.064	192	96		4.07	1000	8000	512000
D200°	tr[<i>M</i>]		128	64	204	4.22	2000	16000	1120000
D201°	$m_s^{\rm phys}$		128	64	204	4.21	1078	8624	603680
N200°	tr[<i>M</i>]		128	48	287	4.45	1712	13696	958720
N203°	tr[<i>M</i>]		128	48	349	5.40	1543	12344	864080
E300°	tr[<i>M</i>]	0.049	192	96	176	4.22	1139	9112	485973
J303°	tr[<i>M</i>]		192	64	260	4.17	1073	8584	600880

- Ensembles cover four values of the lattice spacing a
- ${\small \bullet}$ ${\rm ~Pion}$ masses range from ${\rm \sim 130\,MeV}$ to ${\rm \sim 350\,MeV}$
- Many different physical volumes with $L \approx 2.4, ..., 6.1 \, \text{fm}, M_{\pi}L > 4$.
- Two very large and fine boxes at (near) physical quark mass and high momentum resolution.

Ratio method and effective form factor

Effective form factors from ratio method:

$$R(p_{f}^{2},q^{2},p_{i}^{2},t_{f}-t_{i},t_{op}-t_{i}) = \frac{C_{3}(p_{f}^{2},q^{2},p_{i}^{2},t_{f}-t_{i},t_{op}-t_{i})}{C_{2}(p_{f}^{2},t_{f}-t_{i})}\sqrt{\frac{C_{2}(p_{i}^{2},t_{f}-t_{op})C_{2}(p_{f}^{2},t_{op}-t_{i})C_{2}(p_{f}^{2},t_{f}-t_{i})}{C_{2}(p_{f}^{2},t_{f}-t_{op})C_{2}(p_{i}^{2},t_{op}-t_{i})C_{2}(p_{i}^{2},t_{f}-t_{i})}}$$

 $\Rightarrow \text{ ground state matrix elements } \langle \pi(p_f^2) | S_f(q^2) | \pi(p_i^2) \rangle \sim F_S^{\pi,f}(Q^2) \text{ for } t_{op} - t_i \to \infty \text{ and } t_f - t_{op} \to \infty.$

• Quark-connected data very precise at zero- and non-zero Q^2 .

Ratio method and effective form factor

Effective form factors from ratio method:

$$R(p_{f}^{2},q^{2},p_{i}^{2},t_{f}-t_{i},t_{op}-t_{i}) = \frac{C_{3}(p_{f}^{2},q^{2},p_{i}^{2},t_{f}-t_{i},t_{op}-t_{i})}{C_{2}(p_{f}^{2},t_{f}-t_{i})}\sqrt{\frac{C_{2}(p_{i}^{2},t_{f}-t_{op})C_{2}(p_{f}^{2},t_{op}-t_{i})C_{2}(p_{f}^{2},t_{f}-t_{i})}{C_{2}(p_{f}^{2},t_{f}-t_{op})C_{2}(p_{i}^{2},t_{op}-t_{i})C_{2}(p_{i}^{2},t_{f}-t_{i})}}$$

 $\Rightarrow \text{ ground state matrix elements } \langle \pi(p_f^2) | S_f(q^2) | \pi(p_i^2) \rangle \sim F_S^{\pi,f}(Q^2) \text{ for } t_{op} - t_i \rightarrow \infty \text{ and } t_f - t_{op} \rightarrow \infty.$

Quark-connected data very precise at zero- and non-zero Q².

• Quark-disconnected contribution large at small $Q^2 \rightarrow up$ to $\sim 100\%$ correction on a = 0.086 fm.

Ratio method and effective form factor

Effective form factors from ratio method:

$$R(p_{f}^{2},q^{2},p_{i}^{2},t_{f}-t_{i},t_{op}-t_{i}) = \frac{C_{3}(p_{f}^{2},q^{2},p_{i}^{2},t_{f}-t_{i},t_{op}-t_{i})}{C_{2}(p_{f}^{2},t_{f}-t_{i})}\sqrt{\frac{C_{2}(p_{i}^{2},t_{f}-t_{op})C_{2}(p_{f}^{2},t_{op}-t_{i})C_{2}(p_{f}^{2},t_{f}-t_{i})}{C_{2}(p_{f}^{2},t_{f}-t_{op})C_{2}(p_{i}^{2},t_{op}-t_{i})C_{2}(p_{i}^{2},t_{f}-t_{i})}}$$

 $\Rightarrow \text{ ground state matrix elements } \langle \pi(p_f^2) | S_f(q^2) | \pi(p_i^2) \rangle \sim F_S^{\pi,f}(Q^2) \text{ for } t_{op} - t_i \rightarrow \infty \text{ and } t_f - t_{op} \rightarrow \infty.$

Quark-connected data very precise at zero- and non-zero Q².

- Quark-disconnected contribution large at small $Q^2 \rightarrow up$ to $\sim 100\%$ correction on a = 0.086 fm.
- Error of full form factor dominated by disconnected piece.

Singlet quark-disconnected contribution at Q^2 on C101 (M_{π} = 225 MeV, a = 0.086 fm). Left: Standard VEV subtraction. Right: Improved method.

At $Q^2 = 0$ we initially observed large fluctuations in the quark-disconnected signal on **open boundary ensembles**:

- Correlated fluctuations already visible in the gauge average of the loops (one-point functions).
- Two-point function source-positions t_i often restricted to rather small strip.
- Usual method of (global) VEV-subtraction fails.
- Instead subtract VEV per-timeslice:

$$\left\langle C_{\rm disc}^{3pt}(t_{\rm sep}, t_{\rm ins}) \right\rangle = \frac{1}{N_{t_i}} \sum_{t_i} \left[\left\langle C^{\rm 2pt}(t_f - t_i) C^{1pt}(t_{op} - t_i) \right\rangle - \left\langle C^{\rm 2pt}(t_f - t_i) \right\rangle \cdot \left\langle C^{1pt}(t_{op} - t_i) \right\rangle \right] \,.$$

Summation method for $F_S^{\pi,0}(Q^2)$ on E250 ($M_{\pi} = 132 \,\mathrm{MeV}$, $a = 0.064 \,\mathrm{fm}$); momentum labels: $\mathcal{P} \equiv (\rho_f^2, q^2, \rho_j^2)$

Summation method to extract groundstate matrix elements

$$\sum_{t_{\rm ins}=t_{\rm ex}}^{t_{\rm sep}-t_{\rm ex}} R(\mathbf{p}_f^2, \mathbf{q}^2, \mathbf{p}_i^2, t_{\rm sep}, t_{\rm ins}) = \operatorname{const} + \langle \pi(\mathbf{p}_f^2) | S(Q^2) | \pi(\mathbf{p}_i^2) \rangle (t_{\rm sep} - t_0) + \mathcal{O}(e^{-\Delta t_{\rm sep}})$$

- Choose $t_{ex} \simeq t_{sep}^{min}/2$ to improve signal quality for $Q^2 > 0$.
- Use values of t^{min}_{sep} ∈ [~ 1.0, ..., ~ 1.5] fm.
- Combined with any $t_{\text{sep}}^{\text{max}} \in [\sim 2.25, ..., \sim 3.25] \, \text{fm}$ s.t. $t_{\text{sep}}^{\text{max}} t_{\text{sep}}^{\text{min}} \ge 1 \, \text{fm}$.

ightarrow Carry out remaining analysis for all variations and include them in final model averages

z-expansion fits

Fits for $Q^2 \le 0.3 \text{ GeV}^2$, 1.25 $\lesssim t_{\text{sep}} \lesssim 3.25 \text{ fm}$. Left: $F_5^{\pi,0}(Q^2)$ on E250 ($M_{\pi} = 132 \text{ MeV}$, a = 0.064 fm). Right: $F_5^{\pi,0}(Q^2)$ on E300 ($M_{\pi} = 172 \text{ MeV}$, a = 0.049 fm) Use z-expansion to extract radii from unrenormalized form factor:

$$F_{S}^{\pi,f}(Q^{2}) = \sum_{n=0}^{N_{z}} a_{n} z^{n}, \qquad z = \frac{\sqrt{t_{\text{cut}} + Q^{2}} - \sqrt{t_{\text{cut}} - t_{0}}}{\sqrt{t_{\text{cut}} + Q^{2}} + \sqrt{t_{\text{cut}} - t_{0}}}, \qquad a_{1} \sim \langle r_{S}^{2} \rangle_{\pi}^{f} = -\frac{6}{F_{S}^{\pi,f}(Q)} \cdot \left. \frac{dF_{S}^{\pi,f}(Q^{2})}{dQ^{2}} \right|_{Q^{2} = 0}$$

We use $N_z = 1$, $t_{\rm cut} = 4M_\pi^2$ and $t_0 = t_0^{\rm opt} = t_{\rm cut}(1 - \sqrt{1 + Q_{\rm max}^2/t_{\rm cut}})$.

- Unprecedented Q²-resolution at (near) physical quark mass.
- $\mathbf{p}_f = (1, 0, 0)$ data greatly improves signal quality and Q^2 -resolution.
- No renormalization needed for radii.
- Again we apply data cuts, i.e. $Q_{\rm cut}^2 \in \{0.20, 0.25, 0.30, 0.35, 0.40\} \, {\rm GeV}^2$.

Introduction	Setup	FF analysis	Physical extrapolation	Model averages	Summary & Outlook
O	000	0000	●000	000	o

Physical extrapolation

NLO $\chi {\rm PT}$ fit ansatz with quark mass proxies $m_l \sim M_\pi^2$ and $m_s \sim 2 M_K^2 - M_\pi^2,$

$$\langle r_{S}^{2} \rangle_{\pi}^{0} = \frac{1}{(4\pi f_{0})^{2}} \left[768\pi^{2} \left(3L_{4}^{r} + L_{5}^{r} \right) - 19 + \frac{m_{l}}{m_{l} + 2m_{s}} - 12\log(m_{l}) - 6\log\left(\frac{m_{l} + m_{s}}{2}\right) \right] + c_{0}a^{2},$$

$$\langle r_{S}^{2} \rangle_{\pi}^{l} = \frac{1}{(4\pi f_{0})^{2}} \left[768\pi^{2} \left(2L_{4}^{r} + L_{5}^{r} \right) - 16 + \frac{m_{l}}{3(m_{l} + 2m_{s})} - 12\log(m_{l}) - 3\log\left(\frac{m_{l} + m_{s}}{2}\right) \right] + c_{l}a^{2},$$

$$\langle r_{S}^{2} \rangle_{\pi}^{8} = \frac{1}{(4\pi f_{0})^{2}} \left[768\pi^{2}L_{5}^{r} - 10 - \frac{m_{l}}{m_{l} + 2m_{s}} - 12\log(m_{l}) + 3\log\left(\frac{m_{l} + m_{s}}{2}\right) \right] + c_{8}a^{2}.$$

- Correlated fits are carried out in units of t₀ with N_b = 1000 bootstrap samples.
- Scale setting: $\sqrt{t_0} = 0.14464(87) \, {\rm fm}$. Eur. Phys. J. C 82 (2022) 10, 869 (FLAG Review 2021)
- Physical point (isospin limit): $M_{\pi}^{\text{phys}} = 134.8(3) \text{ MeV}$, $M_{K}^{\text{phys}} = 494.2(3) \text{ MeV}$. Eur. Phys. J. C 77 (2017) 2, 112
- Radii are fitted individually to compute $\langle r_s^2 \rangle_{\pi, phys}^{0,l,8}$.
- LECs f₀, L^r₄, L^r₅ are obtained from fitting the following expressions:

$$\begin{split} & f_{0}: \quad \langle r_{S}^{2} \rangle_{\pi}^{0}, \ \langle r_{S}^{2} \rangle_{\pi}^{I}, \ \langle r_{S}^{2} \rangle_{\pi}^{8}, \ \langle r_{S}^{2} \rangle_{\pi}^{0} - \langle r_{S}^{2} \rangle_{\pi}^{I}, \ \langle r_{S}^{2} \rangle_{\pi}^{0} - \langle r_{S}^{2} \rangle_{\pi}^{8}, \ \langle r_{S}^{2} \rangle_{\pi}^{I} - \langle r_{S}^{2} \rangle_{\pi}^{8}, \\ & L_{4}': \quad \langle r_{S}^{2} \rangle_{\pi}^{0} - \langle r_{S}^{2} \rangle_{\pi}^{I}, \ \langle r_{S}^{2} \rangle_{\pi}^{0} - \langle r_{S}^{2} \rangle_{\pi}^{8}, \ \langle r_{S}^{2} \rangle_{\pi}^{I} - \langle r_{S}^{2} \rangle_{\pi}^{8}, \\ & L_{5}': \quad \langle r_{S}^{2} \rangle_{\pi}^{8}, \ 3 \langle r_{S}^{2} \rangle_{\pi}^{I} - 2 \langle r_{S}^{2} \rangle_{\pi}^{0} \end{split}$$

• Systematics from (combinations of) data cuts $M_{\pi} < \{230, 265, 290\}$ MeV, a < 0.08 fm and L > 3.5 fm.

Example: Fit to $\langle r_{\rm S}^2 \rangle_{\pi}^0$ data (from 1.5 fm $\lesssim t_{\rm sep} \lesssim 3.25$ fm and $Q^2 \leq 0.3$ fm)

Example: Continuum extrapolation

Introduction	Setup	FF analysis	Physical extrapolation	Model averages	Summary & Outlook
0	000	0000	0000	000	0

m_s-dependence

m_s-depence very mild.

- Cuts in M_{π} also remove ensembles further away from $m_s^{\rm phys}$ on tr[M] = const trajectory
- Physical point in m_s well determined by E250, E300 and ensembles with $m_s \approx \text{phys.}$
- Quite stable under various data cuts.

Introduction	Setup	FF analysis	Physical extrapolation	Model averages	Summary & Outlook
0	000	0000		●00	0

Model averages

Assign a weight to each model (fit) Phys. Rev. D 103,114502 (2021)

$$w_i \sim \exp\left(-rac{1}{2}\left[\chi^2 + 2(N_{
m para} - N_{
m prio}) - 2N_{
m data}
ight]
ight).$$

Central value and total err for an observable y are given by median and 16% and 84% percentiles of the CDF

$$CDF(y,\lambda) = \int_{-\infty}^{y} d\tilde{y} \sum_{i} w_{i} N(\tilde{y}, m_{i}, \sigma_{i} \sqrt{\lambda}).$$

Separate statistical ($\sigma_{\rm stat})$ and systematic ($\sigma_{\rm sys})$ errors from solving

$$\lambda \sigma_{\rm stat}^2 + \sigma_{\rm sys}^2 = \left(\frac{y_{\rm hi} - y_{\rm lo}}{2}\right)^2 \quad {\rm where} \quad {\it CDF}(y_{\rm hi}, \lambda) = 0.84\,, \quad {\rm and} \quad {\it CDF}(y_{\rm lo}, \lambda) = 0.16\,,$$

where $\lambda = 2.0$ rescales the statistical errors Nature 593 (2021) 7857, 51-55

Final set of models:
$$\underbrace{\left\{ (t_{\text{sep}}^{\min}, t_{\text{sep}}^{\max}) \text{-pairs} \right\}}_{\text{summation method}} \bigotimes \underbrace{\left\{ Q^2 \text{-cuts} \right\}}_{z \text{-expansion}} \bigotimes \underbrace{\left\{ M_{\pi^-, a\text{- and } L\text{-cuts} \right\}}_{\text{physical extrapolation}} \right\}}_{\text{physical extrapolation}}$$

$$\Rightarrow \underbrace{\begin{bmatrix} \text{observable} & \langle r_5^2 \rangle_{\pi, \text{phys}}^{0,1,8} & f_0 & L_4' & L_5' \\ \# \text{models} & 910 & 5460 & 2730 & 1820 \end{bmatrix}}_{\text{for a large statement}}$$

Results for radii

• Expected hierarchy: $\langle r_s^2 \rangle_{\pi}^8 < \langle r_s^2 \rangle_{\pi}^I < \langle r_s^2 \rangle_{\pi}^0$.

 Compatible with only other lattice calculation by HPQCD. *Phys. Rev. D93, 054503 (2016)*

Results for LECs

• Results for LECs @ $\mu = 770 \,\mathrm{MeV}$ (preliminary):

$$\begin{split} f_0 &= 122.7(6.5)_{\rm stat}(8.5)_{\rm sys} \ {\rm MeV} \\ L_4'(\mu) &= +0.32(10)_{\rm stat}(12)_{\rm sys} \times 10^{-3} \\ L_5'(\mu) &= +0.40(41)_{\rm stat}(1.00)_{\rm sys} \times 10^{-3} \end{split}$$

● FLAG 2021 estimates (*N_f* = 2 + 1):

$$\begin{split} f_0 &= 114.0(8.5) \; \mathrm{MeV} \\ L_4^r(\mu) &= -0.02(56) \times 10^{-3} \\ L_5^r(\mu) &= +0.95(41) \times 10^{-3} \end{split}$$

Introduction	Setup	FF analysis	Physical extrapolation	Model averages	Summary & Outlook
O	000	0000		000	●
Summary a	and Out	look			

- Study of the pion scalar radii on 16 CLS $N_f = 2 + 1$ ensembles:
 - Results for radii at the physical point and results for $SU(3) \chi PT$ LECs.
 - First calculation with fully controlled systematics and corresponding error budget, i.e. excited states, momentum dependence and physical extrapolation.
 - Most precise existing determination of L^r₄.
- Future plans:
 - Finish production and carry out final analysis.
 - Dedicated determination of \bar{l}_4 from SU(2) χ PT fit.
 - ightarrow possibly add a few more ensembles on $m_s^{
 m phys}$ -trajectory.
 - Analyze further form factors, e.g. $F_V^{\pi,K}(Q^2)$.
 - \rightarrow data for all 16 local and one-link displaced operator insertions