### Calculation of meson charge radii using model-independent method in the PACS10 configuration

SATO, Kohei (University of Tsukuba)

WATANABE, Hiromasa (YITP, Kyoto University); YAMAZAKI, Takeshi (University of Tsukuba) for PACS Collaboration

> 28 July – 3 Aug 2024 LATTICE 2024 University of Liverpool, United Kingdom

 $\left\langle r_{\pi}^{2} \right\rangle = -6 \left. \frac{\mathrm{d}}{\mathrm{d}Q^{2}} \left. \frac{F_{\pi}(Q^{2})}{\Box} \right|_{T}$ 

(mean-square) charge radius ... a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

$$\langle \pi^+(p_f) | V_\mu | \pi^+(p_i) \rangle = (p_f + p_i)_\mu F_\pi(Q^2)$$

electromagnetic current:  $V_{\mu} = \sum Q_f \bar{\psi}_f \gamma_{\mu} \psi_f$  Momentum transfer :

$$Q^2 = -(p_f - p_i)^2 \ge 0$$



electromagnetic form factor

- ✓ Initially : large difference Recently : consistent
- ✓ Error : Lattice > Experimental

There are 4 main systematic errors

- Chiral extrapolation
- Continuum extrapolation
- Finite volume effect
- Fit ansatz

Traditional method for calculating the charge radius using lattice QCD

/ 3-point function



Traditional method for calculating the charge radius using lattice QCD



Traditional method for calculating the charge radius using lattice QCD





Model-independent method for calculating the charge radius



 $\langle r_{\pi}^2 \rangle$ 







 $\langle r_{\pi}^2 \rangle$ 

Model-independent method for calculating the charge radius

Important point :

- ✓ This process does not use the fit ansatz.
- ✓ This method includes contamination

(3-point function) = (Known function) ×  $(1 + f_1Q^2 + f_2Q^4 + \cdots)$ 

from higher-order terms in the Taylor expansion.

$$\frac{\mathrm{d}}{\mathrm{d}Q^2} F_{\pi}(Q^2) \Big|_{Q^2=0} = \begin{bmatrix} 3\text{-point function} \\ \hline (\text{Known function}) \\ \hline \text{can be} \\ \text{exactly evaluated} \\ \end{bmatrix} \Big/ \frac{Q^2 + (\text{Higher-order contamination})}{\operatorname{can not be}}$$

✓ The charge radius may be bad affected by the higher-order term.

## Outline

- ✓ Introduction
  - charge radius
  - Traditional method for calculating the charge radius
  - Model-independent method for calculating the charge radius
- ✓ Overview of model-independent method
  - Reducing contamination using spatial moment
- ✓ Application to PACS10 configuration (Preliminary result)
  - $\pi^+$  and  $K^+$  charge radii using traditional and model-independent method
- ✓ Summary

#### **Overview of model-independent method**



✓ Is there a way to extract the first derivative of the form factor

from the three-point function with less contamination?

(3-point function) = (Known function)  $\times (1 + f_1 Q^2 + f_2 Q^4 + \cdots)$ 

#### **Overview of model-independent method**



$$\sum_{x} x^2 C_{3pt}(x,t) \sim f_1 + (f_2 + f_3 + \cdots)$$

#### **Overview of model-independent method**



-> Effective at small lattice size

## Simulation parameters

✓ Gauge configuration (PACS, PRD 99, 014504 (2019))

#### PACS10 configuration

N<sub>f</sub> = 2 + 1 six-stout-smeared non-perturbative
O(a)-improved Wilson action+ Iwasaki gauge action

| β    | $L^3 \cdot T$ | L[fm] | a[fm] | $a^{-1}$ [GeV] | $m_{\pi}$ [MeV] | $m_K$ [MeV] | $N_{\rm conf}$ |
|------|---------------|-------|-------|----------------|-----------------|-------------|----------------|
| 2.20 | $256^{4}$     | 10.5  | 0.041 | 4.792          | 142             | 514         | 20             |
| 2.00 | $160^{4}$     | 10.2  | 0.063 | 3.111          | 137             | 501         | 20             |
| 1.82 | $128^{4}$     | 10.9  | 0.085 | 2.316          | 135             | 497         | 20             |

#### All preliminary results are obtained on the coarsest lattice.

#### ✓ Measurement parameter

- 16 sources  $\times$  4 driections (t,x,y,z)  $\times$  3 random sources = 192 meas. Per config.
- $|t_{sink} t_{source}| = 36$

Details of 3-point functions and calculation methods : K. S. et al., PoS LAT22,122(2022); PoS LAT23,312(2023)



- Chiral extrapolation
   Physical point
- Continuum extrapolation
   3 lattice spacings
- ➢ Finite volume effects
   → Large volume

 ✓ Traditional method (with fit ansatz)









#### Model-independent method



#### Model-independent method



Model-independent method

- Our improved method is consistent with original model-independent method.
- Due to the large volume configuration, contamination is already well suppressed.





- ✓ Calculated results agree with PDG within the margin of error.
- The model-independent and traditional methods agree, but the model-independent method has smaller error.
- ✓ We obtained K<sup>+</sup> charge radius with less error than PDG.

## Summary

- ✓ We calculated the charge radii of  $\pi^+$  and  $K^+$  on the coarsest PACS10 configuration.
- ✓ We use the model-independent method to obtain it.
- ✓ Although preliminary, the results are consistent with the experimental value(PDG) and the results of the previous lattice calculations.

#### **Future works**

- ✓ Analysis at various source-sink time separations
- ✓ Analysis with other particles such as K<sup>0</sup>
- ✓ Other PACS10 configuration



### backup

# Phys.Lett.B324,85(1994) ; Nucl.Phys.B444,401(1995) ; PoS LATTICE2016,170(2016)

=

$$\tilde{C}_{\pi V\pi}(t, t_{\rm sink}; p) = Z_V Z_\pi(0) Z_\pi(p) L^2 \frac{(E_\pi(p) + m_\pi)}{2m_\pi 2E_\pi(p)} F_\pi(q^2) e^{-E_\pi(p)t} e^{-m_\pi(t_{\rm sink} - t)}$$

١

$$\frac{|\overline{\operatorname{For} a \to 0 \text{ and } V \to \infty}}{|d|\vec{p}|^2} \Big|_{|\vec{p}|^2 = 0} = \frac{d}{d|\vec{p}|^2} \int d^3x \, F(\vec{x}) e^{-i\vec{p}\cdot\vec{x}} \Big|_{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$n \text{-th order momentum-derivative at } |\vec{p}|^2 = 0 \implies 2n \text{-th order spatial moment } (|\vec{x}|^{2n})$$

$$\frac{|d\vec{F}(\vec{p})|}{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$n \text{-th order momentum-derivative at } |\vec{p}|^2 = 0 \implies 2n \text{-th order spatial moment } (|\vec{x}|^{2n})$$

$$\frac{|d\vec{r}|}{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$\frac{|d\vec{r}|}{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$\frac{|d\vec{r}|}{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$\frac{|d\vec{r}|}{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$\frac{|d\vec{r}|}{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$\frac{|d\vec{r}|}{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$\frac{|d\vec{r}|}{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$\frac{|d\vec{r}|}{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$\frac{|d\vec{r}|}{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$\frac{|d\vec{r}|}{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$\frac{|d\vec{r}|}{|\vec{p}|^2 = 0} = -\frac{1}{3!} \int d^3x \, |\vec{x}|^2 F(\vec{x})$$

$$\sum_{p} \Delta(t, t_{\text{sink}}, p) T_n(p) F_{\pi}(q^2) \qquad \left( \tilde{C}_{\pi V \pi}(t, t_{\text{sink}}; p) = \Delta(t, t_{\text{sink}}, p) F_{\pi}(q^2), \ T_n(p) := \frac{1}{L} \sum_{r} r^{2n} e^{ipr} \right)$$

$$= f_0 \beta_{0,n}(t) + f_1 \beta_{1,n}(t) + f_2 \beta_{2,n}(t) + \cdots \left( F_{\pi}(q^2) = \sum_{m=0}^{\infty} f_m q^{2m}, \underbrace{\frac{\beta_{m,n}(t)}{\text{known function}}}_{p} := \sum_p \Delta(t, t_{\text{sink}}, p) T_n(p) q^{2m} \right)$$
  
$$\langle r_{\pi}^2 \rangle = -6 \frac{\frac{d}{dq^2} F_{\pi}(q^2)}{q^2 = 0} \quad \text{higher-order contamination}$$

 $(C^{(0)}(t) := 1, f_0 = 1)$ 

### model-independent method

Phys.Rev.D101,051502(R)(2020)

To reduce the higher-order contamination

$$R(t) := \alpha_1 C^{(1)}(t) + \alpha_2 C^{(2)}(t) + h$$

$$\underbrace{C^{(n)}(t)}_{\text{moment function}} := \sum_{r} r^{2n} C_{\pi V \pi}(t, t_{\text{sink}}; r) = \sum_{m=0}^{\infty} f_m \beta_{m,n}(t)$$

$$\frac{\beta_{m,n}(t)}{\text{known function}} := \sum_{p} \Delta(t, t_{\text{sink}}, p) T_n(p) q^{2m}$$

 $= (\alpha_1 \beta_{0,1} + \alpha_2 \beta_{0,2} + h) + (\alpha_1 \beta_{1,1} + \alpha_2 \beta_{1,2}) f_1 + (\alpha_1 \beta_{2,1} + \alpha_2 \beta_{2,2}) f_2 + \cdots$ Define parameters  $\alpha_1, \alpha_2, h$  to satisfy the following  $\langle r_{\pi}^2 \rangle = -6 \left[ \frac{\mathrm{d}}{\mathrm{d}q^2} F_{\pi}(q^2) \right]_{q^2=0}$ 

$$\alpha_1\beta_{0,1} + \alpha_2\beta_{0,2} + h = 0 \qquad \alpha_1\beta_{1,1} + \alpha_2\beta_{1,2} = 1 \qquad \alpha_1\beta_{2,1} + \alpha_2\beta_{2,2} = 0$$

$$R(t) = f_1 + \sum_{m=3}^{\infty} \left( \sum_{k=1}^{2} \alpha_k \beta_{m,k}(t) \right) f_m \qquad \langle r_{\pi}^2 \rangle = -6 \frac{d}{dq^2} F_{\pi}(q^2) \Big|_{q^2=0} \sim -6 \times R(t)$$
constant time-dependent
If the high-order contamination terms is small, we get the charge radius

### Our improved model-independent method

Original method remains the contamination from high-order at small  $M_{pole}^2$  and volume.

Improve the convergence of  $f_m$ and reduce the contamination

$${}^{(n)}(t) = \sum_{p} \Delta(t, t_{\text{sink}}, p) T_{n}(p) F_{\pi}(q^{2}) = \sum_{p} \Delta(t, t_{\text{sink}}, p) T_{n}(p) F_{\pi}(q^{2}) \frac{G(q^{2})}{G(q^{2})}$$

$$= \sum_{p} \Delta(t, t_{\text{sink}}, p) T_{n}(p) F_{\pi}(q^{2}) = \sum_{p} \Delta(t, t_{\text{sink}}, p) T_{n}(p) F_{\pi}(q^{2}) \frac{G(q^{2})}{G(q^{2})}$$

C

$$= \sum_{p} \Delta(t, t_{\text{sink}}, p) T_{n}(p) S(q^{2}) \frac{1}{G(q^{2})} \quad \left(S(q^{2}) := F_{\pi}(q^{2}) G(q^{2})\right)$$

 $R(t) = f_1 + \sum_{k=2}^{\infty} \left( \sum_{k=1}^{2} \alpha_k \beta_{m,k}(t) \right) f_m$ 

Pion form factor is well represented by

$$F_{\pi}(q^2) = \frac{1}{1 + q^2/M_{\text{pole}}^2}$$

from phenomenology.

$$= \sum_{m} s_{m} \tilde{\beta}_{m,n}(t) \quad \left( \frac{S(q^{2})}{m} = \sum_{m} s_{m} q^{2m}, \quad \underbrace{\tilde{\beta}_{m,n}(t)}_{\text{known function}} := \sum_{p} \Delta(t, t_{\text{sink}}, p) T_{n}(p) q^{2m} / G(q^{2}) \right)$$

Original model-independent method changes to  $R(t) = s_1 + \sum_{m=3}^{\infty} \left( \sum_{k=1}^{2} \alpha_k \tilde{\beta}_{m,k}(t) \right) s_m$ 

Change  $F_{\pi}(q^2)$  to  $S(q^2)$  and choose  $G(q^2)$  with good convergence  $s_m$