Calculation of meson charge radii using model-independent method in the PACS10 configuration

SATO, Kohei (University of Tsukuba)

WATANABE, Hiromasa (YITP, Kyoto University) ; YAMAZAKI, Takeshi (University of Tsukuba) for PACS Collaboration

> 28 July – 3 Aug 2024 LATTICE 2024 University of Liverpool, United Kingdom

 $\langle r_{\pi}^2 \rangle = -6 \frac{\mathrm{d}}{\mathrm{d}Q^2} F_{\pi}(Q^2) \Big|_{Q^2}$

(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

$$
\langle \pi^+(p_f) | V_\mu | \pi^+(p_i) \rangle = (p_f + p_i)_\mu F_\pi(Q^2)
$$

electromagnetic electromagnetic form factor $V_{\mu} = \sum Q_f \bar{\psi}_f \gamma_{\mu} \psi_f$ Momentum transfer :

$$
Q^2 = -(p_f - p_i)^2 \ge 0
$$

- \checkmark Initially : large difference Recently : consistent
- \checkmark Error Lattice > Experimental

There are 4 main systematic errors

- ➢ Chiral extrapolation
- ➢ Continuum extrapolation
- ➢ Finite volume effect
- \triangleright Fit ansatz $\frac{1}{12}$

◆ Traditional method for calculating the charge radius using lattice QCD

◆ Traditional method for calculating the charge radius using lattice QCD

◆ Traditional method for calculating the charge radius using lattice QCD

◆ Model-independent method for calculating the charge radius

 r_{π}^{2}

◆ Model-independent method for calculating the charge radius

 r_{π}^{2}

◆ Model-independent method for calculating the charge radius

$$
\frac{d}{dQ^2} F_{\pi}(Q^2) \Big|_{Q^2=0} = \left[\frac{3\text{-point function}}{\text{(Known function)}} - 1 \right] / Q^2 + \text{ (Higher-order contamination)}
$$
\n3-point function\n
$$
\frac{d}{dQ^2} F_{\pi}(Q^2) \Big|_{Q^2=0} \longrightarrow \text{ (Fig. 2)}
$$

Important point :

- \checkmark This process does not use the fit ansatz.
- \checkmark This method includes contamination

 $(3\text{-point function}) = ($ Known function $) \times (1 + f_1 Q^2 + f_2 Q^4 + \cdots)$

from higher-order terms in the Taylor expansion.

$$
\frac{d}{dQ^{2}}F_{\pi}(Q^{2})\Big|_{Q^{2}=0} = \left[\frac{3\text{-point function}}{\text{(Known function)}} - 1\right] / Q^{2} + \text{(Higher-order contamination)}
$$
\ncan be\n
$$
\text{can be}
$$
\n
$$
\text{can be}
$$
\n
$$
\text{can be}
$$
\n
$$
\text{exactly evaluated}
$$
\n
$$
\text{evaluated}
$$

 \checkmark The charge radius may be bad affected by the higher-order term. $4/12$

Outline

- ✓ Introduction
	- charge radius
	- Traditional method for calculating the charge radius
	- Model-independent method for calculating the charge radius
- ✓ Overview of model-independent method
	- Reducing contamination using spatial moment
- \checkmark Application to PACS10 configuration (Preliminary result)
	- \cdot π^+ and K^+ charge radii using traditional and model-independent method
- ✓ Summary

Overview of model-independent method

 $(3\text{-point function}) = ($ Known function) $\times (1 + f_1Q^2 + f_2Q^4 + \cdots)$

Overview of model-independent method

$$
Key idea: Calculate spatial moment\nC. Bouchard et al., Phys. Lett.B324,85(1994); UKQCD, Nucl. Phys.B444,401(1995);\nC. Bouchard et al., Pos LATTICE2016,170(2016); PACS, Phys. Rev.D104, 074514(2021)\n\n
$$
\left.\left.\begin{array}{c}\n\Delta \tilde{C}(p) \\
\frac{d\tilde{C}(p)}{dp^2}\n\end{array}\right|_{p^2=0} = \frac{d}{dp^2} \sum_x C(x)e^{-ipx}\n\left|_{p^2=0} = -\frac{1}{2} \sum_x x^2 C(x)\n\end{array}\n\right|_{\text{infinite} ; L = N_{space}a \rightarrow \infty}
$$
\n
$$
(N_{space} \rightarrow \infty, a \text{ :finite } ; L = N_{space}a \rightarrow \infty)
$$
\n
$$
\text{infinite volume limit}
$$
\nWe can suppress the contamination at large volume.
$$

 $(3\text{-point function}) = ($ Known function) $\times (1 + f_1Q^2 + f_2Q^4 + \cdots)$

Overview of model-independent method

 \rightarrow Effective at small lattice size 6/12

Simulation parameters

✓ Gauge configuration (PACS, PRD 99, 014504 (2019))

PACS10 configuration

 $N_f = 2 + 1$ six-stout-smeared non-perturbative $O(a)$ -improved Wilson action+ Iwasaki gauge action

All preliminary results are obtained on the coarsest lattice.

✓ Measurement parameter

- 16 sources \times 4 driections $(t,x,y,z) \times 3$ random sources = 192 meas. Per config.
- $|t_{sink} t_{source}| = 36$

Details of 3-point functions and calculation methods : K. S. et al., PoS LAT22,122(2022) ; PoS LAT23,312(2023)

- ➢ Chiral extrapolation \rightarrow Physical point
- ➢ Continuum extrapolation \rightarrow 3 lattice spacings
- ➢ Finite volume effects \rightarrow Large volume

✓ **Traditional method (with fit ansatz)**

✓ **Model-independent method**

✓ **Model-independent method**

✓ **Model-independent method**

- ✓ Our improved method is consistent with original model-independent method.
- Due to the large volume configuration, contamination is already well suppressed.

- \checkmark Calculated results agree with PDG within the margin of error.
- \checkmark The model-independent and traditional methods agree, but the model-independent method has smaller error.
- \checkmark We obtained K^+ charge radius with less error than PDG.

Summary

- \checkmark We calculated the charge radii of π^+ and K^+ on the coarsest PACS10 configuration.
- ✓ We use the model-independent method to obtain it.
- \checkmark Although preliminary, the results are consistent with the experimental value(PDG) and the results of the previous lattice calculations.

Future works

- \checkmark Analysis at various source-sink time separations
- \checkmark Analysis with other particles such as K^0
- ✓ Other PACS10 configuration

backup

model-independent method

Phys.Lett.B324,85(1994) ; Nucl.Phys.B444,401(1995) ; PoS LATTICE2016,170(2016)

$$
\tilde{C}_{\pi V\pi}(t, t_{\text{sink}}; p) = Z_V Z_{\pi}(0) Z_{\pi}(p) L^2 \frac{(E_{\pi}(p) + m_{\pi})}{2m_{\pi} 2E_{\pi}(p)} F_{\pi}(q^2) e^{-E_{\pi}(p)t} e^{-m_{\pi}(t_{\text{sink}} - t)}
$$

For
$$
a \to 0
$$
 and $V \to \infty$
\n
$$
\frac{d\tilde{F}(\vec{p})}{d|\vec{p}|^2}\Big|_{|\vec{p}|^2=0} = \frac{d}{d|\vec{p}|^2} \int d^3x F(\vec{x})e^{-i\vec{p}\cdot\vec{x}}\Big|_{|\vec{p}|^2=0} = -\frac{1}{3!} \int d^3x |\vec{x}|^2 F(\vec{x})
$$
\n*n*-th order momentum-derivative at $|\vec{p}|^2 = 0$ \longrightarrow 2*n*-th order spatial moment $(|\vec{x}|^{2n})$

$$
\begin{array}{lll}\n\hline\n\text{For finite } V, \text{ the higher-order contaminations appear.} & \text{C}_{\pi\nu\pi}(t, t_{\text{sink}}; r) := Z_{\nu} \sum_{z} \sum_{y_{x,y}} \sum_{x_{y,x}} \langle 0|\pi^{+}(z, t_{\text{sink}}) V_{4}(\vec{y}, t)\pi^{+ \dagger}(\vec{x}, 0)|0\rangle \\
C^{(n)}(t) & := & \sum_{r} r^{2n} C_{\pi V\pi}(t, t_{\text{sink}}; r) = \sum_{r} r^{2n} \frac{1}{L} \sum_{p} \tilde{C}_{\pi V\pi}(t, t_{\text{sink}}; p) e^{ipr} & \text{C}_{\pi} \sum_{z} \sum_{y_{x,y,y}} \sum_{x_{y,z}} \langle 0|\pi^{+}(z, t_{\text{sink}}) V_{4}(\vec{y}, t)\pi^{+ \dagger}(\vec{x}, 0)|0\rangle \\
& & = & \sum_{p} \Delta(t, t_{\text{sink}}, p) T_{n}(p) F_{\pi}(q^{2}) & \left(\tilde{C}_{\pi V\pi}(t, t_{\text{sink}}; p) = \Delta(t, t_{\text{sink}}, p) F_{\pi}(q^{2}), \ T_{n}(p) := \frac{1}{L} \sum_{r} r^{2n} e^{ipr} \right) \\
& & = & f_{0}\beta_{0,n}(t) + \int_{1}\beta_{1,n}(t) + \int_{2}\beta_{2,n}(t) + \cdots & \left(F_{\pi}(q^{2}) = \sum_{m=0}^{\infty} f_{m}q^{2m}, \ \frac{\beta_{m,n}(t)}{\beta_{m,n}(t)} & := \sum_{p} \Delta(t, t_{\text{sink}}, p) T_{n}(p) q^{2m} \right) \\
& & \text{hydrogen function} & \text{F}_{\pi} \sum_{z} \sum_{y_{x,y,y,z}} \sum_{y_{x,y,z}} \langle 0|\pi^{+}(z, t_{\text{sink}}) V_{4}(\vec{y}, t)\pi^{+ \dagger}(\vec{x}, 0)|0\rangle \\
& & \text{F}_{\pi} \sum_{z} \sum_{y_{x,y,z}} \sum_{y_{x,y,z}} \sum_{y_{x,y,z}} \langle 0|\pi^{+}(z, t_{\text{sink}}) V_{4}(\vec{y}, t)\pi^{+ \dagger
$$

 $(C^{(0)}(t) := 1, f_0 = 1)$

model-independent method

Phys.Rev.D101,051502(R)(2020)

To reduce the higher-order contamination

$$
R(t) := \alpha_1 C^{(1)}(t) + \alpha_2 C^{(2)}(t) + h
$$

$$
\underbrace{C^{(n)}(t)}_{\text{moment function}} := \sum_r r^{2n} C_{\pi V \pi}(t, t_{\text{sink}}; r) = \sum_{m=0}^{\infty} f_m \beta_{m,n}(t)
$$

$$
\frac{\beta_{m,n}(t)}{\text{known function}} := \sum_{p} \Delta(t, t_{\text{sink}}, p) T_n(p) q^{2m}
$$

= $(\alpha_1\beta_{0,1} + \alpha_2\beta_{0,2} + h) + (\alpha_1\beta_{1,1} + \alpha_2\beta_{1,2})f_1 + (\alpha_1\beta_{2,1} + \alpha_2\beta_{2,2})f_2 + \cdots$ Define parameters α_1, α_2, h to satisfy the following $\langle r^2 \rangle = -6 \left| \frac{d}{dq^2} F_{\pi}(q^2) \right|_{q^2=0}$ $\alpha_1\beta_{0,1} + \alpha_2\beta_{0,2} + h = 0$ $\alpha_1\beta_{1,1} + \alpha_2\beta_{1,2} = 1$ $\alpha_1\beta_{2,1} + \alpha_2\beta_{2,2} = 0$

Our improved model-independent method

 $R(t) = f_1 + \sum_{n=0}^{\infty} \left(\sum_{k=1}^{2} \alpha_k \beta_{m,k}(t) \right) f_m$ PoS LATTICE2022,122(2023)

Original method remains the contamination from high-order at small $M_{\rm{pole}}^2\;$ and volume.

Improve the convergence of f_m and reduce the contamination

$$
C^{(n)}(t) = \sum_{p} \Delta(t, t_{\text{sink}}, p) T_{n}(p) F_{\pi}(q^{2}) = \sum_{p} \Delta(t, t_{\text{sink}}, p) T_{n}(p) F_{\pi}(q^{2}) \frac{G(q^{2})}{G(q^{2})}
$$

$$
= \sum_{p} \Delta(t, t_{\text{sink}}, p) T_{n}(p) S(q^{2}) \frac{1}{G(q^{2})} \quad (S(q^{2}) := F_{\pi}(q^{2}) G(q^{2}))
$$

$$
\frac{(q^2)}{(q^2)}
$$
 represented by
\n
$$
F_{\pi}(q^2) = \frac{1}{1 + q^2/M_{\text{pole}}^2}
$$
\nfrom phenomenology.

-- Fact --

Pion form factor is well

$$
= \sum_{m} s_m \tilde{\beta}_{m,n}(t) \quad \left(S(q^2) = \sum_{m} s_m q^{2m}, \quad \frac{\tilde{\beta}_{m,n}(t)}{\text{known function}} := \sum_{p} \Delta(t, t_{\text{sink}}, p) T_n(p) q^{2m} / G(q^2) \right)
$$

Original model-independent method changes to $R(t) = s_1 + \sum_{s=1}^{\infty} \left(\sum_{i=1}^{n} \alpha_k \tilde{\beta}_{m,k}(t) \right) s_m$

Change $F_{\pi}(q^2)$ to $S(q^2)$ and choose $G(q^2)$ with good convergence s_m