

$B^* \pi$ excited-state contamination in B-physics observables

Antoine Gérardin (for the ALPHA collaboration)

41st Lattice Conference Liverpool - July 30, 2024

- ▶ Excited states are present in (almost) any lattice calculation \rightarrow smearing (gauss, Wuppertal, distillation, ...) \rightarrow use several operators (GEVP, global fits, ...)
- \blacktriangleright Multi-hadron excited states (e.g. $B^{(*)}\pi$ or $N\pi$ for the nucleon)
	- \rightarrow lowest excited states $(m_\pi\rightarrow m_\pi^\text{phys},\,L\rightarrow\infty)$
	- \rightarrow dominate at long distances (where we extract relevant information)
	- \rightarrow spectrum becomes more dense in large volume
	- \rightarrow effective field theories can do predictions (needs low-energy constants, LECs)
- ▶ Question : Do standard techniques handle these states correctly? \rightarrow statistical errors might hide a systematic bias due to multi-hadronic states
- **►** Focus on the $B \to \pi$ form factors (but the same LECs enter other relevant observales)
	- 1) compute the relevant LECs of HMChiPT
	- 2) test HMChiPT against lattice data

 \bullet Semileptonic decay $B\to\pi\ell\bar\nu_\ell$: form factors decomposition

$$
m_B^{-1/2} \langle \pi(p_\pi)|V^\mu|B(p_B)\rangle = (p_\pi^\mu - (v \cdot p_\pi)v^\mu) h_\perp(v \cdot p_\pi) + v^\mu h_\parallel(v \cdot p_\pi)
$$

• Rest frame of the B meson $(\vec{v} = \vec{0})$ and using the HQET normalization of states :

$$
\langle \pi(p_{\pi})|V^{k}|B(p_{B})\rangle_{\text{HQET}} = p_{\pi}^{k} h_{\perp}(E_{\pi}),
$$

$$
\langle \pi(p_{\pi})|V^{0}|B(p_{B})\rangle_{\text{HQET}} = h_{\parallel}(E_{\pi})
$$

 \bullet CKM matrix element $|V_{ub}|$: form factor $f_+(q^2)$

$$
f_{+}(q^{2}) = \frac{\sqrt{m_{B}}}{2} \left[\left(1 - \frac{E_{\pi}}{m_{B}} \right) h_{\perp}(E_{\pi}) + \frac{1}{m_{B}} h_{\parallel}(E_{\pi}) \right]
$$

 \rightarrow at small pion energies, the form factor f_{+} is dominated by h_{\perp}

- \rightarrow but h_{\perp} potentially strongly affected by $B^*\pi$ excited states contamination
- Extraction from standard ratio of three- and two-point functions

$$
h_{\perp}^{\text{eff}}(t_v, t_{\pi}, E_{\pi}) = h_{\perp}(E_{\pi}) \times (1 + \Delta h_{\perp}(t_v, E_{\pi}) + \cdots)
$$

$$
B^* \pi \text{ excited states} \quad \text{other excited states}
$$

Prediction from HMChiPT

- Observable dependent : predicted to be large for h_{\perp}
- Prediction from HMChiPT : [O. Bär, A. Broll, R. Sommer '23]

$$
\Delta h_{\perp}(t_{v};\mathbf{p})=-\frac{1+\widetilde{\beta}_{1}E_{\pi}(\mathbf{p})/g}{1-\beta_{1}E_{\pi}(\mathbf{p})/g}\;e^{-E_{\pi}(\mathbf{p})t_{v}}
$$

 \rightarrow prediction depends on LECs (β_1 , $\widetilde{\beta}_1$, g) \rightarrow there is a tree level contribution !

• Does smearing help to suppress $B^* \pi$ excited states?

 \rightarrow compute β_1 , $\widetilde{\beta}_1$ on the lattice

Example 1 : heavy-light 2-point function in the static limit

▶ Standard approach to suppress excited states : smearing (e.g. Gauss smearing)

$$
\mathcal{O}_B(t) = \sum_{\mathbf{x}} \bar{b}(x)\gamma_5 d_{\text{smr}}(x) \quad \text{with} \quad d_{\text{smr}}(x) = \int_{L^3} d^3y \ K(x, y) d(y)
$$

Example : Effective mass from 2-point heavy-light correlators $\langle \overline{\mathcal{O}}_B(t)\mathcal{O}_B(0)\rangle$

 \rightarrow Smearing helps to reduce excited state contamination, plateau at earlier time

 \rightarrow HMChiPT predicts a "small" $B^*\pi$ contribution (\rightarrow loop contribution, only few % for $t > 1$ fm)

 \rightarrow Systematic procedure : use N operators and solve the Generalized Eigenvalue Problem (GEVP)

[Blossier et al. '09]

Gaussian smearing and $B \to \pi$ form factors (static limit of HQET)

 \rightarrow Smearing does not help that much \Rightarrow ineffective in removing $B^*\pi$ excited states? \rightarrow HMChiPT prediction needs (unknown) LECs as input : β_1 and $\tilde{\beta}_1$ (smearing dependent)

- $\bullet\,$ CLS trajectory with $m_s\approx m_s^{\mathrm{phys}}$
	- \rightarrow SU(2) ChiPT

 \rightarrow LECs (β_1 and $\widetilde{\beta}_1$) available on blue ensembles

Calculation of the LECs : β_1 and β_1

► HM_XPT prediction (at NLO) for the form factor h_{\perp} [A. F. Falk et al '94] [D. Becirevic et al. '23]

$$
\frac{\langle \pi(\mathbf{p}) | V_k | B \rangle}{\langle \pi(\mathbf{p}^{\star}) | V_k | B \rangle} = \frac{1 - \beta_1 / g E_{\pi}(\mathbf{p})}{1 - \beta_1 / g E_{\pi}(\mathbf{p}^{\star})} \times \frac{E_{\pi}(\mathbf{p}^{\star})}{E_{\pi}(\mathbf{p})} \times \frac{p_k}{(p^{\star})_k}
$$
\n\mathbf{p}^{\star} : reference momentum

 \rightarrow extract β_1 from the pion energy dependence \to smearing of the vector current $(V_\mu\to\widetilde{V}_\mu)$: gives access to $\widetilde{\beta}_1$ (LECs for smeared B operators) [O. Bär, A. Broll, R. Sommer '23]

▶ Matrix element obtained from 3-point functions in the static limit

$$
C_{\mu}^{(3)}(t_{\pi}, t_{v}; \mathbf{p}) = \frac{a^{9}}{V^{2}} \sum_{\mathbf{x}_{\mathbf{f}}, \mathbf{y}, \mathbf{x}_{\mathbf{i}}} \langle \overline{\mathcal{O}}_{\pi}(\mathbf{x}_{\mathbf{f}}, t_{v} + t_{\pi}) V_{\mu}(\mathbf{y}, t_{v}) \mathcal{O}_{B}(\mathbf{x}_{\mathbf{i}}, 0) \rangle e^{-i\mathbf{p}(\mathbf{x}_{\mathbf{f}} - \mathbf{y})}
$$

Replace local by smeared vector current : $\widetilde{V}_{\mu} \longrightarrow \widetilde{C}_{\mu}^{(3)}$

Lattice estimator :

$$
R^{\text{eff}}(t, t_v; \mathbf{p}) \equiv \frac{E_{\pi}(\mathbf{p})}{E_{\pi}(\mathbf{p}^{\star})} \frac{(p^{\star})_k}{p_k} \times \frac{\widetilde{C}_k^{(3)}(t_{\pi}, t_v; \mathbf{p})}{\widetilde{C}_k^{(3)}(t_{\pi}, t_v; \mathbf{p}^{\star})} \frac{C_{\pi}^{(2)}(t_{\pi}, \mathbf{p}^{\star})}{C_{\pi}^{(2)}(t_{\pi}, \mathbf{p})}
$$

 \rightarrow this estimator is itself affected by excited states : can be used to correct our data

$$
1 + \delta_{B\pi}(t_v; \mathbf{p}) = \frac{1 + \Delta h_{\perp}(t_v; \mathbf{p})}{1 + \Delta h_{\perp}(t_v; \mathbf{p}^{\star})} \approx 1 + e^{-(E_{\pi}(\mathbf{p}) - E_{\pi}(\mathbf{p}^{\star}))t_v} + \frac{\beta_1 + \tilde{\beta}_1}{g} \left(E_{\pi}(\mathbf{p})e^{-E_{\pi}(\mathbf{p})t} - E_{\pi}(\mathbf{p}^{\star})e^{-E_{\pi}(\mathbf{p}^{\star})t} \right) + \cdots
$$

Antoine Gérardin 7 B∗π [excited-state contamination in B-physics observables](#page-0-0)

 t_{v}

Preliminary results : β_1 and $\tilde{\beta_1}$

$$
R^{\text{eff}}(t,t_v; \mathbf{p}) \equiv \frac{E_{\pi}(\mathbf{p})}{E_{\pi}(\mathbf{p}^{\star})} \frac{(p^{\star})_k}{p_k} \times \frac{\widetilde{C}_k^{(3)}(t,t_v; \mathbf{p})}{\widetilde{C}_k^{(3)}(t,t_v; \mathbf{p}^{\star})} \frac{C_{\pi}^{(2)}(t-t_v, \mathbf{p}^{\star})}{C_{\pi}^{(2)}(t-t_v, \mathbf{p})} \qquad \qquad \mathbf{\pi} \qquad \qquad \qquad \mathbf{\mathbf{p}} \qquad \
$$

• Plateaus at fixed $t_{\pi} = 1$ fm (left) or at fixed $t_v = 1$ fm (right). We have $t = t_v + t_{\pi}$.

• Repeat the analysis for different values of E_{π} in the range [0.29, 0.85] GeV

Preliminary results : β_1 and $\tilde{\beta_1}$

• HM χ PT prediction :

$$
R(\mathbf{p}) = \frac{1 - \beta_1/g \, E_\pi(\mathbf{p})}{1 - \beta_1/g \, E_\pi(\mathbf{p}^\star)}
$$

 \mathbf{p}^{\star} : reference momentum

- Preliminary result : $\beta_1 = 0.20(2)$ GeV $^{-1}$ and $\beta_1 = 0.23(3)$ GeV $^{-1}$ (@ our largest smearing radius)
- Conclusion : $\widetilde{\beta}_1 \approx \beta_1 \Rightarrow$ small impact of smearing on $B^*\pi$ excited states !

Dominant excited states contamination :

$$
\Delta h_{\perp}(t_{v};\mathbf{p})=-\frac{1+\widetilde{\beta}_{1}E_{\pi}(\mathbf{p})/g}{1-\beta_{1}E_{\pi}(\mathbf{p})/g}\;e^{-E_{\pi}(\mathbf{p})t_{v}}
$$

- HMChitPT predicts the size of excited states contribution \rightarrow depends on a few LECs
- Can we further test HMChiPT?
	- \rightarrow start with a simpler case : (static) heavy-light 2pt function

$$
C_B(t) = |\langle 0| \mathcal{O}_B|B\rangle|^2 e^{-E_B t} \times (1 + \delta C_B(t) + \cdots) ,
$$

The correction term is now a sum over a tower of $B^*(\mathbf{p})\pi(-\mathbf{p})$ states with all allowed lattice momenta [O. Bär, A. Broll, R. Sommer '23]

$$
\delta C_B(t) = \sum_{\mathbf{p}} \frac{C_N}{2} \frac{1}{(fL)^2 (E_\pi(\mathbf{p})L)} \frac{|\mathbf{p}|^2}{E_\pi(\mathbf{p})^2} \left(g + \tilde{\beta}_1 E_\pi(\mathbf{p})\right)^2 e^{-E_\pi(\mathbf{p})t}
$$

$$
\rightarrow \left|\frac{\langle 0|\mathcal{O}_B|B^*\pi\rangle}{\langle 0|\mathcal{O}_B|B\rangle}\right|^2 \text{ in spectral decomposition}
$$

 \bullet Comment : preliminary results obtained with $m_\pi\approx 400$ MeV $\gg m_\pi^{\rm phys}$

Test of $HM\chi PT$: two-point heavy-light function with Gauss smearing

• Include explicitly a two-particle interpolator and solve a GEVP : $C(t)v_n(t, t_0) = \lambda_n(t, t_0)C(t_0)v_n(t, t_0)$

$$
C_{ij}(t) = \begin{pmatrix} \langle \overline{O}_B(t)O_B(0) \rangle & \langle \overline{O}_{B\pi}(t)O_B(0) \rangle \\ \langle \overline{O}_B(t)O_{B\pi}(0) \rangle & \langle \overline{O}_{B\pi}(t)O_{B\pi}(0) \rangle \end{pmatrix} = \sum_{n=1}^{\infty} \psi_{ni}^* \psi_{nj} e^{-E_n t}
$$

→ we consider the simplest case : 2 × 2 GEVP (single $B^*(\mathbf{p})\pi(-\mathbf{p})$ with smallest $|\mathbf{p}|$)

$$
\psi_{ni}^{\text{eff}}(t) = C_{ij}(t)v_{nj}(t, t_0) \times \left(\frac{\lambda_n(t, t_0)}{\lambda_n(t + 1, t_0)}\right)^{t - t_0/2} \quad (n = 1 : B, \quad n = 2 : B^*\pi)
$$

Test of $HM\chi PT$: two-point heavy-light function with distillation

- $\widetilde{\beta}_1$ depends on the detail of the smearing operator \rightarrow other smearings may yield better results (?)
- Preliminary results obtained with distillation [M Peardon et al. '09]

 \rightarrow preliminary results suggest smaller overlap with $B^*\pi$ states as compared to gauss smearing

 \rightarrow Applicability of HLChPT is unclear. Non-local smearing.)

- HMChiPT provides predictions for excited states \rightarrow depends on a few LECs : accessible on the lattice \rightarrow observable dependent but can be (very) large : h_{\perp}
- Calculation of the LECs relevant for $B^*\pi$ is almost complete \rightarrow better understanding of smearing on multi-hadron states
- We can test these predictions
- Perspective

 \rightarrow apply the method to extract $B \rightarrow \pi$ form factors

