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Semileptonic pseudoscalar to pseudoscalar decay - B→ π`ν

We wish to find the q2

dependence of the form factors
(q is 4-momentum of the outgoing
lepton pair). b̄
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Vµ = ūγµb

B and π are pseudoscalar mesons of masses M and m

kinematic constraint→ f+(0) = f0(0)
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Unitarity Constraint

Unitarity constraint from subtracted dispersion relations:

χ0+ =
1
π

∫ ∞

tcut
dt ImΠ0+(t)

t
,

χ1− =
1
π

∫ ∞

tcut
dt ImΠ1−(t)

t2
,

ImΠ0+,1− =
1
2
∑
n

∫
dµ(n)(2π)4δ(4)(q− pn)|〈0|J|n〉|2.

A complete set of states has been inserted, restricting to a subset
relating to B→ π`ν , giving constraints on its form factors.

Okubo Phys. Rev. D 3, 2807 1971[1], Phys. Rev. D 4, 725 1971[2]; Okubo and Shih PRD4 2020 1971[3];

Bourrely, Machet, de Rafael NPB189 157 1981[4]; Boyd, Grinstein, Lebed PLB353 306 1995[5], NPB461

493 1996[6], PRD56 6895 1997[7]; Lellouch NPB479 353 1996[8]
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Z-transformation

Dispersion relation is now

1
2πi

∮
|z|=1

dz
z
|φ(z)B(z)f(z)|2 ≤ χ

With q2 = t, we map the q2 complex plane onto a unit disc:

z(t) =
√
tcut − t−

√
tcut − t0√

tcut − t+
√
tcut − t0

t0 = tcut −
√
tcut(tcut − (MB −Mπ)2)

q2max

tcut = (mB+mπ)
2

m2
B∗(1−)

m2
B∗(0+)

q2 z

4



Dispersive Matrix method

2 ways to proceed using lattice form factor information:

• Analyticity allows power series expansion of φBf (BGL/BCL
expansion) and unitarity gives constraints on coefficients
Boyd, Grinstein, Lebed PLB353 306 1995[5], NPB461 493 1996[6], PRD56 6895 1997[7], Bourrely,

Caprini, Lellouch PRD79 013008 2009 [9]

• The Dispersive Matrix method, which finds form factor values
allowed by unitarity, independent of any functional form Okubo

Phys. Rev. D 3, 2807 1971[1], Phys. Rev. D 4, 725 1971[2]; Okubo and Shih PRD4 2020 1971[3];

Bourrely, Machet, de Rafael NPB189 157 1981[4]; Lellouch NPB479 353 1996[8]

Di Carlo et al, PRD104 054502, 2021 [10]; Martinelli et al PRD105 034503, 2022 [11], JHEP 08 022

202216, 2022 [12] + More
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Dispersive Matrix method

Define an inner product:

〈j | k〉 = 1
2πi

∮
|z|=1

dz
z
j̄(z)k(z),

Disp. rel. is now χ ≥ 〈φBf |φBf〉. We define the function, gt(z) as

gt(z) ≡
1

1− z̄(t)z
,

so that the inner product, 〈gt |φBf〉 = φ (z(t))B(z(t))f(z(t)).
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Dispersive Matrix method

M =


〈φBf |φBf〉 〈φBf | gt〉 〈φBf | gt1〉 · · · 〈φBf | gtn〉
〈gt |φBf〉 〈gt | gt〉 〈gt | gt1〉 · · · 〈gt | gtn〉
〈gt1 |φBf〉 〈gt1 | gt〉 〈gt1 | gt1〉 · · · 〈gt1 | gtn〉

...
...

...
...

...
〈gtn |φBf〉 〈gtn | gt〉 〈gtn | gt1〉 · · · 〈gtn | gtn〉


〈φBf |φBf〉 Inner product constrained by disp. rel.
〈φBf | gt〉 The form factor value at q2 = t we wish to find
〈φBf | gti〉 Known form factor values

~F =
(

〈φBf | gt〉 〈φBf | gt1〉 · · · 〈φBf | gtn〉
)

M =

(
〈φBf |φBf〉 ~F

~FT G

)
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Dispersive Matrix method

det(M) = det(G)×
(
〈φBf |φBf〉 −~FTG−1~F

)
≥ 0

→ 〈φBf |φBf〉 −~FTG−1~F ≥ 0

From our disp. rel. χ ≥ 〈φBf |φBf〉,

→ Can substitute χ into our equation and the inequality still holds.

χ−~FTG−1~F ≥ 0

→ Quadratic in φ(t)B(t)f(t)
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Dispersive Matrix method

Can easily find bounds at any q2 using the DM method.

Want to know form factors over continuous ranges for integration.

We wish to generate a family of curves, each consistent with unitarity
constraints, that can be used in the same way as a set generated
from a parametrized fit (e.g. a z-fit).

At the end of the process, we take into account uncertainties of our
inputs through resampling.
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Generating Form Factor Curves

Find bounds at q2 = 0 - Unitarity and Kinematic constraints

Unitarity allows an infinite number of form factor curves passing
through these form factor points and through the bounds at q2 = 0.
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Generating Form Factor Curves

*Plots for illustration*
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Generating Form Factor Curves

*Plots for illustration*

Repeat over entire range and interpolate
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Generating Form Factor Curves

Preliminary lattice data from RBC/UKQCD collaboration

In the limit of δ → 0, repeating an infinite number of times generates
all possible form factor curves through known values.
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Generating Form Factor Curves

The envelope of the family of curves matches the results from the
DM method 14



Form Factor Curves Across Bins

The described method allows us to generate form factor curves
across the entire q2 spectrum.

For comparison with experiment, we integrate over bins→ only
necessary to generate curves over individual bins.

Decreased range→ smaller δ & more curves

Identical procedure, however the first step is from q2 = 0 directly to
the start of the bin.

Curves passing through the start of the bin are consistent with the
same uniform distribution

15



Vub from binned curves

We repeat our curve generation method over many resamples of our
lattice data and find Vub for each curve.

∫ q22

q21
dq2 dΓ

dq2
= |Vub|2

∫ q22

q21
dq2 G2F

24π3

(
q2 −m2

`

)2√E2π −M2
π

q4M2
B

×[(
1+ m2

`

2q2

)
M2
B
(
E2π −M2

π

) ∣∣f+ (q2)∣∣2
+
3m2

`

8q2
(
M2
B −M2

π

)2 ∣∣f0 (q2)∣∣2]
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Vub from binned curves

1

FLAG 2021 [14]
1Experimental data used is from the Belle collaboration [13]
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Exclusion of points

After a certain number of steps, the upper and lower bounds
calculated are effectively equal (the width of the bound is near 0).

With an increased number of points, the width of these bounds
remains below threshold.

We may remove previous points from our Dispersive Matrix.

This speeds up the generation of curves, as our Dispersive Matrix
remains a manageable size.
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Variation of δ

Results should not depend on δ if it is small enough

2

Here we have integrated over the whole kinematic range.
2Experimental data used is from the Belle collaboration [13]
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Summary

This method allows us to generate form factor curves using the DM
method framework.

These curves allow us to easily integrate our form factor results (in
the same way as parametrized fits).

δ can be made small enough that its effect (and the effects of
interpolation method/width threshold) is not visible compared to all
other error sources.

Both the generation of curves over individual bins and the ”width
threshold” method result in decreases in computational cost, making
this method practical to use.
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Direction testing

Below are the distributions of curves passing through q2 = 10GeV2

for low-to-high and high-to-low q2

(a) Distribution of low-to-high q2 curves (b) Distribution of high-to-low q2 curves

Both distributions are consistent with the same uniform distribution
(Kolmogorov–Smirnov test).
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Interpolation method

Our interpolation method also does not have a significant effect on
the value of Vub we calculate.
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Marching threshold

Marching threshold has no visible effect when δ is small enough.
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Generating Form Factor Curves

We test if these segments of form factor curves are equivalent when
starting at the bin vs reaching the bin after a series of small steps.

The presence of intermediate steps does not change the curves
generated→ Both f0 are consistent with the same uniform
distribution (Kolmogorov–Smirnov test).
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