(Virtual) radiative Leptonic decays of charged Kaons

Roberto Di Palma^{1,2} **Updates from the RM123 collaboration**

41st Lattice conference, Liverpool, 30/07/2024

with R. Frezzotti, G. Gagliardi, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, N. Tantalo

Istituto Nazionale di Fisica Nucleare

1: Dipartimento di Matematica e Fisica, Università di Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy

2: Infn, sezione di Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy

•Starting at $\mathcal{O}(\alpha_{em}^2)$ in the SM

Decay	$\mathcal{BR}[10^{-8}]$	$\sigma[\mathcal{BR}][10^{-1}]$	-8]	Exp.		
$e^+ u_e e^+e^-$	2.5	0.2	Dh		l att 80 (*	り
$\mu^+ u_\mu e^+e^-$	7.1	0.3	<u> </u>	<u>ys.nev.</u>		4
$e^+ u_e^+ \mu^+ \mu^-$	1.7	0.5	<u>Ph</u> y	/s.Rev.	D 73 (200	6
$\mu^+ u_\mu\mu^+\mu^-$	< 4 × 10 ⁻⁷		<u>Phy</u>	s.Rev.	L <i>ett.</i> 63 (1	Ç

Building upon previous works

Phys.Rev.D 105 (2022) 11, 114507 RM123

Phys.Rev.D 105 (2022) 5, 054518 Xu Feng et al.

Testing the HLT method for hadronic amplitudes

Lattice, 30/07/2024

2

Hadronic amplitudes

Perturbative contr.

•In the Kaon rest-frame and with $k = (E_{\gamma}, \mathbf{k})$, we have

$$H_w^{\mu\nu} = \int d^4x \ e^{ikx} \langle 0 | T[J_{em}^{\mu}]$$

$$H_{pt}^{\mu
u}$$
 needs just f_K

Lattice, 30/07/2024

What we consider

Electroquenched approx.

3

$_{n}(x)J_{w}^{\nu}(0)]|K(0)\rangle = H_{nt}^{\mu\nu} + H_{SD}^{\mu\nu}$

$H_{SD}^{\mu\nu}$ needs **4 Form Factors:** SD GOAL \longrightarrow F_V, F_A, H_1, H_2

Performing a naive Wick rotation to Euclidean times

$$t \rightarrow -i \int dt \ e^{iE_{\gamma}t}(\cdots)(t) \longrightarrow -i \int dt \ e^{E_{\gamma}t}(\cdots)(-it)$$

$$D)J_{em}^{\mu}(t, \mathbf{k}) | K(\mathbf{0}) \rangle$$

$$1 \text{ st TO}$$

$$(t, \mathbf{k})J_{w}^{\nu}(0) | K(\mathbf{0}) \rangle$$

$$2 \text{ nd TO}$$

R. Di Palma: $K \rightarrow l \nu \gamma^{(*)}$

N

Analytic continuation

Lattice, 30/07/2024

Analytic continuation
1st TO:
$$-i \sum_{n_{|S|=1}} \langle 0 | J_{W}^{\nu}(0) | n_{|S|=1}(-\mathbf{k}) \rangle \langle n_{|S|=1}(-\mathbf{k}) | J_{em}^{\mu}(0,\mathbf{k}) | K(\mathbf{0}) \rangle \int_{-\infty}^{0} dt \ e^{t(E_{\gamma}+E_{n_{|S|=1}})} e^{t(E_{\gamma}+E_{n_{|S|=1}})$$

Lattice, 30/07/2024

R. Di Palma: $K \rightarrow l\nu\gamma^{(*)}$

em

Euclidean lattice correlators

•We evaluate 3-pts correlation functions on a Euclidean lattice

- •Interpolating operator $\hat{P}(0)$
- Weak current at a fixed time t_w
- Employing exactly conserved e.m. current

 $l/s \int_{em}^{\mu} (t)$ l/sNucl.Phys.B Proc.Suppl. 17 (1990) 361-364 R. Di Palma, G. Gagliardi, F. Sanfilippo S/l

R. Di Palma: $K \rightarrow l \nu \gamma^{(*)}$

- Optimized Gaussian smearing <u>Lattice 2023</u>
- Light and strange contributions separately

Lattice, 30/07/2024

 $C_{w,E}^{\mu\nu}(t,\mathbf{k}) \propto T\langle J_{em}^{\mu}(t,\mathbf{k})J_{w}^{\nu}(t_{w})\hat{P}(0)\rangle_{LT}$

Lattice setup

	Ensemble	$ a [{ m fm}]$	$L[{ m fm}]$	$T[\mathrm{fm}]$	$t_w[{ m fm}]$	$N_{ m confs}$	$N_{ m srcs}^l$	$N_{ m srcs}^s$	
Utended Twisteor Inor	B64	0.079	5.09	10.2	2.0, 2.5	200	24	12	
	C80	0.068	5.45	10.9	2.2	160	24	12	
	B96	0.079	7.63	15.3	2.2				
	$\mathbf{B48}$	0.079	3.8	7.6	2.2	Ungoing			

- Physical pions
- Study of the ground-state dominance performed only for the B64
- Photon momentum covering all the values available:

$$\mathbf{k} = (0, 0, k_z)$$

$$x_{\gamma} = 2 \left| \mathbf{k} \right| / m_K :$$

• $N_f = 2 + 1 + 1$ Wilson-Clover twisted-mass ETMC gauge ensembles

0.1, 0.3, 0.5, 0.7, 0.9

 $x_{\nu} = 0$ used to reduce the noise

- Standard analysis for 1st TO and 2nd TO
- Finite-volume effects due to the temporal truncation of the integrals

Lattice, 30/07/2024

) for
$$k^2 < 4m_{\pi}^2$$

R. Di Palma: $K \rightarrow l\nu\gamma^{(*)}$

•We rely on the so-called HLT method for the light contribution in the region $k^2 > 4m_{\pi}^2$

Lattice, 30/07/2024

•Summing the Correlator:

11

• $t > t_w + t'_s$: $C^{\mu\nu}_{w,E}(t,\mathbf{k}) = 0$

Lattice, 30/07/2024

Spectral representation of $H^{\mu\nu}_{\mu\nu}$

$$C_w^{\mu\nu}(t, \mathbf{k}) = \int_{E^*}^{\infty} \frac{dE'}{2\pi} e^{-iE't} \rho_w^{\mu\nu}(E', \mathbf{k}) \quad \rho_w^{\mu\nu}(E', \mathbf{k})$$

• Trading time with energy <u>Phys.Rev.D 108 (2023) 7, 074510</u>

$$H^{\mu\nu}_{w}(k,0) = \int dt \ e^{iE_{\gamma}t} C^{\mu\nu}_{w}(t,\mathbf{k}) \to \lim_{\epsilon \to 0} \int_{E^*}^{\infty} \frac{dE'}{2\pi} \ \frac{\rho^{\mu\nu}_{w}(E',\mathbf{k})}{E' - E_{\gamma} - i\epsilon}$$

• We can use any kernel that does the job

$$H^{\mu\nu}_{w}(k,0) = \lim_{\epsilon \to 0} \int_{E^*}^{\infty} \frac{dE'}{2\pi} \rho^{\mu\nu}_{w}(E',\mathbf{k})K(E'-E_{\gamma};\varepsilon)$$

Lattice, 30/07/2024

•The correlator can be written in terms of its spectral density $\rho_w^{\mu\nu}(E')$

 $J', \mathbf{k} = \langle 0 | J^{\mu}_{em}(0)(2\pi)^4 \delta^3(p - \mathbf{k}) \delta(H - E') J^{\nu}_{w}(0) | K \rangle$

$i\varepsilon$ prescription

Relevant for $E^* < E_{\gamma}$, since it acts as a regulator and provides an **Imaginary part**

14

The HLT method

$$K(E' - E; \epsilon) = \sum_{t=t_w}^{T/2} g_t(E, \epsilon) e^{-E't}$$

Complex coefficients to determine $g_t(E,\epsilon) = g_t^R(E,\epsilon) + ig_t^I(E,\epsilon)$

• The HLT method finds the best choice for $g_t(E, \epsilon)$ by minimizing

$$W[\mathbf{g}] = \frac{A[\mathbf{g}]}{A[\mathbf{0}]} + \lambda B[\mathbf{g}]$$

Trade-off

Kernel reconstruction error

Lattice, 30/07/2024

• The determination of the spectral density from Lattice is an **ill-posed problem**. Evaluating convolution of $\rho_w^{\mu\nu}(E', \mathbf{k})$ with a Kernel at $\epsilon \neq 0$ is well-posed Geophys.J.Int. 16 (1968) 2, 169-205 G. Backus & F. Gilbert

$$iH_w^{\mu\nu}(k,0) \simeq \sum_{t=t_w+1}^{T/2} g_t(E,\epsilon) C_{w,E}^{\mu\nu}(t,\mathbf{k})$$

More on the subject @ Lattice 24

A. De Santis' talk

15

Statistical error

H_V from HLT

- 2nd TO, photon emission from the light quark. B64 gauge ensemble
- Real part connects to the standard analysis as ε decreases (from the bottom up)
- Reconstructing the imaginary part

R. Di Palma: $K \rightarrow l\nu\gamma^{(*)}$

A quick look at the real photon $K \rightarrow l \nu_l \gamma$

Real photon emission

•Starting at $\mathcal{O}(\alpha_{em})$ in the SM and removes the helicity suppression affecting pure leptonic decays

• Standard approach: No analytic continuation problem, $k^2 = 0$

•Just two form factors relevant for $H_{SD}^{\mu\nu}$: F_V and F_A

• Full computation available

18

Phys.Rev.D 103 (2021) 1, 014502

- Heavy pions
- Continuum and chiral limit

Form factors

0.130

- 0.125
- 0.120 Compatible with the 0.115 $\mathbf{L}_{0.110}^{>}$ previous results (purple 0.105 points) 0.100

 - 0.095
 - 0.090
 - -0.010
 - -0.015
 - -0.020
- Uncertainty reduced by a -0.025 u[♥] −0.030 factor of 2 (systematics yet -0.035 to be included) -0.040

 - -0.050

R. Di Palma: $K \rightarrow l\nu\gamma^{(*)}$

Summary

- with physical pions
- •Using the HLT method as a powerful tool to overcome the analytic continuation problem
- Update of $K \rightarrow l \nu_l \gamma$ results with physical pions

To-do list

- Finishing all the gauge ensembles and estimating the systematics
- Computation of the decay rates
- Performing the $\varepsilon \to 0$ extrapolation

Lattice, 30/07/2024

•Computed the four form factors describing the SD part of $K \to l \nu_l \gamma^*$

Backup

Lattice, 30/07/2024

 $P = (m_K, 0)$ $k = \left(\sqrt{k^2 + k_z^2}, 0, 0, k_z\right)$ k_{7} ~k m_K m_K 23

Hadronic amplitude

$$\begin{split} H_{W}^{\mu\nu} &= H_{\mathrm{pt}}^{\mu\nu} + H_{\mathrm{SD}}^{\mu\nu}, \\ H_{\mathrm{pt}}^{\mu\nu} &= f_{P} \left[g^{\mu\nu} - \frac{(2p-k)^{\mu}(p-k)^{\nu}}{(p-k)^{2} - m_{P}^{2}} \right], \\ H_{\mathrm{SD}}^{\mu\nu} &= \frac{H_{1}}{m_{P}} \left(k^{2} g^{\mu\nu} - k^{\mu} k^{\nu} \right) + \frac{H_{2}}{m_{P}} \frac{\left[(k \cdot p - k^{2})k^{\mu} - k^{2} \left(p - k \right)^{\mu} \right]}{(p-k)^{2} - m_{P}^{2}} \left(p - k \right)^{\nu} + \frac{F_{A}}{m_{P}} \left[(k \cdot p - k^{2})g^{\mu\nu} - (p-k)^{\mu} k^{\mu} k^{\mu} - i \frac{F_{V}}{m_{P}} \epsilon^{\mu\nu\alpha\beta} k_{\alpha} p_{\beta}. \right] \\ &- i \frac{F_{V}}{m_{P}} \epsilon^{\mu\nu\alpha\beta} k_{\alpha} p_{\beta}. \end{split}$$
Structure-dependent contribution
1 Vector FF: F_{V}
3 Axial FFs: F_{A} , H_{1} , H_{2}

Lattice, 30/07/2024

Point-like contribution

R. Di Palma: $K \rightarrow l\nu\gamma^{(*)}$

 ν

Removing the point-like contribution

$$\tilde{H}_A^{33}(k_z, k^2) \equiv H_A^{33}(k_z, k^2) - H_A^{33}(0, 0) \frac{E_{\gamma} (2m_P - M_P)}{2m_P E_{\gamma}} - \tilde{H}_A^{11}(k_z, k^2) \equiv H_A^{11}(k_z, k^2) - H_A^{11}(0, 0) = -H_1 \frac{k^2}{m_P}$$

$$H_A^{[3,0]}(k_z,k^2) \equiv H_A^{30}(k_z,k^2) - H_A^{03}(k_z,k^2) \left(\frac{m_P - E_{\gamma}}{2m_P - E_{\gamma}}\right) = -H_1 \frac{E_{\gamma}k_z}{2m_P - E_{\gamma}} - H_2 \frac{k_z(m_P - E_{\gamma})}{2m_P - E_{\gamma}} + F_A \frac{k_z m_P}{2m_P - E_{\gamma}} + F_A \frac{k_Z m_P}{$$

Lattice, 30/07/2024

R. Di Pa

alma:
$$K \rightarrow l \nu \gamma^{(*)}$$

Form factors Vector $F_V = i H_V^{21} / k_7$ $C_{V,E}^{21}(t, \mathbf{k}) = C_{V,E}^{21}(t, \mathbf{k}) - C_{V,E}^{21}(t, \mathbf{0})$

 $C_{AE}^{03}(t, \mathbf{k}) = C_{AE}^{03}(t, \mathbf{k}) - C_{AE}^{03}(t, \mathbf{0})$

 $C_{A,E}^{30}(t, \mathbf{k}) = C_{A,E}^{30}(t, \mathbf{k}) - C_{A,E}^{30}(t, \mathbf{0})$ $\begin{pmatrix} F_A \\ H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} -\frac{E_{\gamma}k_z}{2m_P - E_{\gamma}} & -\frac{k_z(m_P - E_{\gamma})}{2m_P - E_{\gamma}} & \frac{k_z m_P}{2m_P - E_{\gamma}} \\ -\frac{E_{\gamma}^2 + k^2}{m_P} & \frac{E_{\gamma}k_z^2}{2E_{\gamma}m_P - k^2} & \frac{E_{\gamma}^2 - 2E_{\gamma}m_P + k^2}{m_P} \\ \frac{k^2 - E_{\gamma}^2}{m_P} & \frac{E_{\gamma}k_z^2}{2E_{\gamma}m_P - k^2} & \frac{E_{\gamma}^2 - k^2}{m_P} \end{pmatrix}^{-1} \begin{pmatrix} H_A^{30} - H_A^{03} \\ \tilde{H}_A^{11} + \tilde{H}_A^{33} \\ \tilde{H}_A^{11} - (\tilde{H}_A^{33} - \tilde{H}_A^{11})(k_z = 0) \end{pmatrix}$

Lattice, 30/07/2024

 $2 |\mathbf{k}| / m_K = 0.1, 0.3$

R. Di Palma: $K \rightarrow l \nu \gamma^{(*)}$

The HLT method Kernel reconstruction

Statistical error $B[\mathbf{g}] \propto \sum g_{t_1}(E,\epsilon)g_{t_2}(E,\epsilon)Cov(t_1,t_2)$ $t_1, t_2 = t_w + 1$

Lattice, 30/07/2024

R. Di Palma: $K \rightarrow l \nu \gamma^{(*)}$

27

Comparison at a fixed virtuality

Lattice, 30/07/2024

R. Di Palma: $K \rightarrow l\nu\gamma^{(*)}$