Gluon Collins-Soper Kernel from lattice QCD

Speaker: Yang Fu (MIT)

Collaborators: Artur Avkhadiev (MIT), Phiala Shanahan (MIT), Michael Wagman (Fermilab), Yong Zhao (Argonne)

July 28 - Aug 3, 2024 Lattice 2024, Liverpool

3D hadron structure: from PDF to TMD PDF

- Parton distribution function (PDF): $f_{i/h}(x)$
- probability of finding a parton *i* in hadron *h* carrying momentum fraction $x \rightarrow \text{longitudinal}$

• Transverse-momentum-dependent PDF (TMD PDF):

$$f_{i/h}(x, \vec{k}_{\mathrm{T}}), \quad \text{or coordinate-space} \quad f_{i/h}(x, \vec{b}_{\mathrm{T}}) = \int \mathrm{d}^2 \vec{k}_{\mathrm{T}} e^{i \vec{k}_{\mathrm{T}} \cdot \vec{b}_{\mathrm{T}}} f_i(x, \vec{k}_{\mathrm{T}})$$

- probability of finding parton *i* with fraction *x* and <u>transverse momentum</u> $\vec{k}_{T} \rightarrow \text{longitudinal}$ and transverse (or the Fourier conjugate \vec{b}_{T})

 \Rightarrow Rich hadron 3D internal structure in TMD PDFs!

• TMD PDFs can be determined in various processes

need ability to relate different energy scales

- Evolution of TMD PDFs:
- 1. UV renormalization scale μ 2. rapidity scale ζ

The evolution kernels are universal (independent of external hadron h)

$$egin{aligned} &f_{i/h}(x, b_{\mathrm{T}}, \mu, \zeta) = f_{i/h}(x, b_{\mathrm{T}}, \mu_0, \zeta_0) \ & imes \expiggl[\int_{\mu_0}^{\mu} rac{\mathrm{d}\mu'}{\mu'} rac{\gamma_{\mu}^i(\mu', \zeta_0)}{\mu'} iggr] \expiggl[rac{1}{2} rac{\gamma_{\zeta}^i(\mu, b_{\mathrm{T}})}{2} \ln rac{\zeta}{\zeta_0} iggr] \end{aligned}$$

UV anomalous dimension rapidity anomalous dimension (Collins-Soper kernel)

 $\bullet~{\rm UV}$ anomalous dimension γ^i_μ is perturbative as long as scales are large

But CS kernel γ_{ζ}^{i} is always nonperturbative for $b_{\mathrm{T}} \gtrsim \Lambda_{\mathrm{OCD}}^{-1}$

(even if the evolution variables μ , ζ are perturbative)

W boson mass

0.2

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

0.0 0.1 0.2 0.3 0.4 0.5

short dist up

 b_T [fm]

 $\gamma^q_\zeta(b_T,\mu)$

• CS kernel also required as input into measurements of several observables

E.g. W boson mass extracted from $p\bar{p} \rightarrow W^- \rightarrow l^- \nu_l$

• Need robust understanding of all QCD theory especially non-perturbative QCD effects

Variations in CS kernel \Rightarrow % variations in $d\sigma/dq_T$

el. variations [%]

2

-2

n

• Distribution shape is sensitive to CS kernel, measurement of M_W affected

 $q_T \, [\text{GeV}]$

20

10

figures from Johannes Michel, MIT

CDF II, Science 2022

Quark Collins-Soper kernel

• Our group's LQCD calculation of quark CS kernel:

PRL 132 (2024) 23, 231901

- First such calculation with systematic control of quark mass, operator mixing, and discretization effects

- Model-dependence in pheno. parameterizations is significant lattice results are precise enough to discriminate between different models What about gluon CS kernel?

• Experimentally:

lack of data for gluon TMDs. But can expect in the near future from EIC

- Theoretically:
- perturbative region: 1-loop result is

$$\gamma_{\zeta}(\mu, b_{T}) = -\frac{\alpha_{s}}{\pi} \ln \frac{b_{T}^{2} \mu^{2}}{4e^{-2\gamma_{E}}} \times \begin{cases} C_{F}, & \text{quark} \\ C_{A}, & \text{gluon} \end{cases} + \mathcal{O}(\alpha_{s}^{2})$$

only differ by a group theory factor (C_A v.s. C_F), almost the same as quark

- non-perturbative region: nobody knows!
 - This work: extend our calculation to the gluon CS kernel

it will be the first lattice prediction for future experiments

- LQCD can not directly access parton physics defined on light-cone
- Large-Momentum Effective Theory (LaMET): Provides a framework to

link Euclidean equal-time correlation functions to light-cone one

X. Ji, PRL 110 (2013), SCPMA57 (2014)

• Quasi distribution calculable on lattice, with same IR physics as light-cone Differences in UV accounted for by perturbative matching Quasi-TMDs can be related to light-cone TMDs via LaMET

Ebert, Schindler, Stewart & Zhao, JHEP 04, 178 (2022)

• CS kernel extracted from ratio with different momenta P_1 and P_2

$$\gamma_{\zeta}(b_{T},\mu) = \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln\left[\frac{\tilde{f}(x,b_{T},\mu,P_{1}^{z})}{\tilde{f}(x,b_{T},\mu,P_{2}^{z})}\right] + \delta\gamma_{\zeta}(x,\mu,P_{1}^{z},P_{2}^{z}) + \text{p.c.}$$

with $\delta \gamma_{\zeta}(x, \mu, P_1^z, P_2^z)$ compute from pert. matching kernel

• Power corrections need to be under control $\rightarrow x$ away from 0 and 1

Staple-shaped Operator

• Operators for the gluon quasi-TMDs

$$\mathcal{O}_{g}^{\mu
u,
ho\sigma}(b) = G^{\mu
u}\left(rac{b}{2}
ight)W^{\mathrm{adj}}_{\Box}(b,l)G^{
ho\sigma}\left(-rac{b}{2}
ight)$$

• For the unpolarized case, four operators are multiplicatively renormalizable

$$\begin{aligned} \mathcal{O}_{g}^{(1)} &= \mathcal{O}_{g}^{0i,0i}, \quad \mathcal{O}_{g}^{(2)} &= \mathcal{O}_{g}^{3i,3i} \\ \mathcal{O}_{g}^{(3)} &= \frac{1}{2} \big(\mathcal{O}_{g}^{0i,3i} + \mathcal{O}_{g}^{3i,0i} \big), \quad \mathcal{O}_{g}^{(4)} &= \mathcal{O}_{g}^{3\mu,3\mu} \end{aligned}$$

Zhu et al, JHEP 02, 114 (2023)

 \Rightarrow renormalization cancelled in the ratio

• Symmetry properties: by Hermiticity and translation invariance

$$\mathcal{O}^{\mu
u,
ho
u}_{g}(b) = \left[\mathcal{O}^{\mu
u,
ho
u}_{g}(b)
ight]^{\dagger} = \mathcal{O}^{
ho
u,\mu
u}_{g}(-b)$$

 \Rightarrow These operators are real and symmetric under b
ightarrow -b

Quasi-TMDs

- Two observables can be used to compute the CS kernel on lattice
- Quasi-beam functions from 2pt and 3pt functions

 $ilde{B}(b^z, b_{\mathrm{T}}, \ell, P^z) = \langle h(P^z) | \mathcal{O}(b_{\mu}, 0, \ell) | h(P^z)
angle$

- Quasi-TMD wavefunctions (WFs) from 2pt functions

 $ilde{\psi}(b^z, b_{\mathrm{T}}, \ell, \mathsf{P}^z) = \langle 0 | \mathcal{O}(b_{\mu}, -\mathsf{P}^z, \ell) | h(\mathsf{P}^z)
angle$

- For quark CS kernel, quasi-TMD WFs are used
- lower computational cost for 2pts
 - For gluon CS kernel, we prefer quasi-beam functions
- No quark disconnected contractions
- 3pts can be computed by correlating 2pts with gluon operator

Staple-shaped operator \mathcal{O}

Workflow

CS kernel from ratio:

$$\gamma_{\zeta}(b_{T},\mu) = \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \left[\frac{\int \frac{\mathrm{d}b^{z}}{2\pi} e^{ixP_{1}^{z}b^{z}} N(P_{1}^{z}) \lim_{\ell \to \infty} \tilde{B}(b^{z}, b_{T}, \ell, P_{1}^{z}) \tilde{\Delta}^{S}(b_{T}, l)}{\int \frac{\mathrm{d}b^{z}}{2\pi} e^{ixP_{2}^{z}b^{z}} N(P_{2}^{z}) \lim_{\ell \to \infty} \tilde{B}(b^{z}, b_{T}, \ell, P_{2}^{z}) \tilde{\Delta}^{S}(b_{T}, l)} \right] + \delta\gamma_{\zeta}(x, \mu, P_{1}^{z}, P_{2}^{z}) + \text{p.c.}$$
Quasi-soft factor $\tilde{\Delta}^{S}(b_{T}, l)$ is a Wilson loop

to remove the linear divergence \sim I + b_T

1. Position-space MEs $\ell \to \infty$ extrapolation 2. x-space MEs integral range b_{\max}^{z} 3. Ratio of MEs $\downarrow \to \infty$ extrapolation $\downarrow \to \infty$

with pert. matching

1-loop matching for gluon available in

Schindler, Stewart & Zhao, JHEP 08, 084 (2022)

Lattice setup

• Calculation carried out on a single MILC ensemble: $L^3 \times T = 48^3 \times 64$, a = 0.12 fm, $m_{\pi} = 148$ MeV $N_{cfg} \times N_{src} \approx 470 \times 16$ (will be increased to $\sim 1000 \times 256 \rightarrow 30 \times$ more)

• CS kernel is universal — independent of hadronic state pion state is primary target (suppressed power corrections $M^2/(xP^z)^2$) nucleon state will also be studied at the same time

• All multip. renormlizable operators calculated 11 values of $\ell \in [0.84, 3.48]$ fm to suppress finite- ℓ effect 4 values of $P^z = 0.86, 1.29, 1.72, 2.15$ GeV

Results shown below are with pion and $O^{0i,0i}$ (most precise)

• Step 1. extract MEs from 3pts

summation method used

• Step 3. MEs as function of $b^z P^z$

After averaging all staple orientations, MEs are numerically real and symmetric

Quark vs. Gluon

• Comparison of quark and gluon cases

-
$$b_T = 0.12$$
 fm, $P^z = 4 \times \frac{2\pi}{L} = 0.86$ GeV

- same number of measurements $\mathit{N}_{cfg} imes \mathit{N}_{src} \sim 470 imes 16$

An order of magnitude more stats are needed to achieve a similar precision

Quark: few % errors

Gluon: 20 - 30% errors

x-space MEs

• Fourier transform to x-space

$$\tilde{B}(x, b_T, P^z) = \int_{|b^z| < b^z_{\max}} \frac{\mathrm{d}b^z}{2\pi} e^{ixP^z b^z} N(P^z) \tilde{B}(b^z, b_T, P^z)$$

- Dependence on b_{\max}^{z}

Fourier transformation is saturated for $\textit{P}^z\textit{b}^z_{max}\gtrsim 5$ with errors

tails outside physical range $x \in [-1, 1]$ are reduced as P^z increases

- MEs as a function of x

- Quark and gluon x-space MEs have different symmetries
- Quark (with pion state)

- Gluon

Symmetric under $x \rightarrow 1 - x$ momentum fraction of two quarks Symmetric under $x \rightarrow -x$ Gluons are their own anti-particles

• For gluon, even more stats are needed since the ratio is not taken around the peak, and unfortunately signal lost at $x \sim 0.5$ with current error

 $\bullet\,$ But meaningful results will be achieved with $\sim 30\times\,$ more statistics

CS kernel from quark to gluon:

- In contrast to quark TMDs, gluon TMDs are almost unknown (both experiments and lattice QCD)
- Matrix elements have some different symmetry properties
- Current statistics suggests that meaningful results can be achieved with an order of magnitude more data which is what we're doing $(N_{\rm cfg} \times N_{\rm src} \approx 500 \times 16 \rightarrow 1000 \times 256)$

Thank you!

Backup Slides

Rapidity divergence

• Regulators such as dimensional regularization only regulate UV divergences rapidity divergences arise in soft and collinear need a dedicated regulator

Ebert, Stewart & Zhao, JHEP 09, 037 (2019)

• A concrete example

$$I_{\rm div} = \int \mathrm{d}p^+ \mathrm{d}p^- \frac{f(p^+p^-)}{(p^+p^-)^{1+\epsilon}} = \frac{1}{2} \int \frac{\mathrm{d}(p^-/p^+)}{p^-/p^+} \int \mathrm{d}(p^+p^-) \frac{f(p^+p^-)}{(p^+p^-)^{1+\epsilon}}$$