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Introduction

The computation of the gluon PDFs is needed for the precise computation of a
number of observables, as the cross-sections for the jet production and the Higgs
boson production measured at LHC, or the J/ψ photo production measuread at
Jefferson Lab.

Global analyses of data from deep inelastic scattering and related processes allow
to access information on the PDFs and future colliders are expected to improve the
precision on the determination of gluon PDFs.

Current efforts are devoted to increase the precision on the gluon distribution
xg(x) and in the understanding of the suppression in 0.1 < x < 0.4 when ATLAS
and CMS data on the jet production are included.
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Introudction

Computing PDFs on the lattice is important from a theoretical point of view, as it
allows to get insights on the non-perturbative properties of the QCD from first
principles.

Several strategies have been proposed for the extraction of the x-dependent hadron
structure from lattice data:

I path integral formulation of the DIS hadronic tensor;
I OPE;
I lattice cross sections;
I quasi-PDF;
I pseudo-PDF.
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Introduction

Our goal is to refine predictions on the Gluon Distribution in Nucleons already
presented in HadStruc, Phys. Rev. D 104 (2021) no.9, 094516 [2107.08960],
extend it to more lattice spacings and pion masses, in order to attain a continuum
prediction at the physical point.

Data production and analysis is still ongoing, and this talk will be focused on a
new strategy to extract more precise estimations of the relevant matrix elements,
that we are currently testing.
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pseudo-PDF Framework

In the context of the pseudo-PDF approach, we ccompute the pseudo-ITD
M(ν, z2), whose Fourier transform returns the pseudo-PDF P(x, z2), that in turn is
the Lorentz invariant generalization of the PDF we are interested in.

We apply the reduced pseudo-ITD approach, where the multiplicative UV
renormalization factors in M(ν, z2) are canceled by computing a ratio of the
relevant matrix elements

M(ν, z2) =
M(p, z)
M(0, z)

/
M(p, 0)
M(0, 0)

, (1)

making the reduced pseudo-ITD becomes an RGI quantity. Then, we compute the
gluon PDF through the short distance factorization.
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pseudo-PDF Framework

The matrix element appearing in the RHS of Eq. (1) can be computed as

M = Mti;it + Mji;ij , (2)

where
Mµν;νµ(z, p) = 2 〈p|Gµν(z)W [z, 0]Gνµ(0)W [0, z]|p〉 , (3)

W [z, 0] is the straight Wilson line of length z connecting the gluon fields Gµν(0)
and Gµν(z) and pµ is the nucleon momentum.

Such expectation values can be calculated on the lattice. As the gluonic currents
are not connected to the nucleon state by quark propagators, we compute
separately the two-point function and the gluon operator and then we combine
them to get the relevant three points function.

L. Maio | Lattice 2024 5/18



Lattice operators

The gluonic currents can be computed as

Oµν;νµ(z) = Pµν(z)U3(z)Pνµ(0)U3(z)†, (4)

where P is the “open” plaquette operator, and U3 the Wilson
lines connecting (and closing) the plaquettes. To reduce sta-
tistical fluctuations, each plaquette is the average of the four
possible realizations obtainable by changing µ and ν signs.

Taking into account the change of sign due to the Wick rotation,
the total gluonic current becomes

Og(z) = Pji(z)U3(z)Pij(0)U3(z)† − Pti(z)U3(z)Pit(0)U3(z)†.
(5)
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Lattice operators

To compute the nucleon two-points correlators we apply distillation, an
approximation to the gauge-covariant Jacobi-smearing kernel. Such method allows
to compute the computational-demanding propagators (called perambulators in
this context) on the gauge fields once, and then to use them on a large basis of
interpolators. This is suitable to perform a (summed) GEVP analysis.

Moreover, distillation allows to perform momentum smearing on both source and
sink interpolating operator, in contrast to the most customary methods. Thus, we
are able to impose momentum projection on all the three time slices of our
three-point function.

Last but not least, the low-lying levels of the nucleon can be captured with a
relatively small number of distillation eigenvectors, thus lowering the cost of the
computation.
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Lattice operators

The interpolating operators are chosen in order to have the largest overlap with
the ground state and the lowest excited states.

In the table, a spectroscopic notation is adopted to indicate the operator:
N 2S+1LπJP , where S is the Dirac spin, L the orbital angular momentum; π is the
permutation simmetry, J the total angular momentum and P the parity.
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Lattice operators

Finally, the three point function is computed as

C ij
3pt(t, tg) = (C ij

2pt(t)− < C ij
2pt(t) >)(Og− < Og(tg) >), (6)

where
C2pt

ij(t) =< Oi(0) O j(t) >, (7)

Oi(t) being the i th interpolator.

To extract the matrix elements from C3pt we imlement the sGEVP method, which
consists of a combination of the summation method and the standard GEVP, and
requires to compute the summed three-point function

C s
3pt(t) =

t−1∑
tg=1

C3pt(t, tg). (8)
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GEVP

The generalized eigenvalue problem of the two-point correlator matrix is stated as
follows

C2pt(t)un(t, t0) = λn(t, t0)C2pt(t0)un(t, t0) (9)

where n denotes the energy level (we aim to solve the system for N energy levels
where N is the number of interpolators), un(t, t0) is a generalized eigenvector,
λn(t, t0) the principal correlator. Solving the problem, means rotating the
two-points correlator in the basis spanned by the generalized eigenvectors, leading
to a better identification of the low lying states contributions. Then, the energy
can be obtained by fitting the principal correlator

λn(t, t0) = (1 − An)e−En(t−t0) + Ane−E′
n(t−t0). (10)

When the fit is dominated by the leading exponential An � 1, and E ′
n > En.
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sGEVP

The summed GEVP generalizes the GEVP, allowing to compute the interesting
matrix elment

Meff ,s
nn (t, t0) = −∂t

(un(t, t0), [C s
3pt(t)λ−1

n (t, t0)− C s
3pt(t0)]un(t, t0))

(un(t, t0),C2pt(t0)un(t, t0))
, (11)

which consists in rotating the three point correlator in the same basis where the
two-point one is diagonal, which results in the suppression of the excited states
contributions to the three-point correlator as well.

Our aim is to improve the GEVP results by projecting the two point function in
the operator subspace with the largest overlap with the ground state.
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The projection

The overlap factors can be easily computed, as they are related to the eigenvectors
by

Zn
i = 〈n|O†

i |0〉 =
√

2mnemnt0/2uj
n
∗C ji(t0), (12)

and comparing them allows to determine what are the operators that contribute
the most to the ground state isolation.

Then, one can build the projector on the subspace spanned by the most important
operators using the eigenvectors.

P =
∑

i∈{O}

ei ⊗ ei , where ei = ui −
i−1∑
k=0

(ek,ui) ek, (13)

and i runs on the most important operators. The Gram–Schmidt algorithm is used
because the ui

n rows are not orthonormal.
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The projection

Then, our procedure consists in performing again a GEVP analysis but using the
projected correlator, thus solving the system of equation

CP
2pt(t)un(t, t0) = λn(t, t0)CP

2pt(t0)un(t, t0), (14)

where
CP

2pt(t) = PC2pt(t). (15)

is an M × M matrix, where M is the number of selected operators on which we
performed the projection. Then, we construct the three-point correlator using
CP

2pt(t), and evaluate the effective matrix element through the sGEVP as shown
above.

We expect this method to improve the ground state identification, sacrificing
precision on the excited states, which, however, are not interesting in this context.
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Lattice details

We performed an exploratory study on an Nf = 2 + 1 ensemble with stout-link
smeared clover Wilson fermions (with isotropic ρ=0.125) and a tree-level improved
Symanzik gauge action, with lattice spacing a ' 0.094 fm and Pion mass
Mπ ' 358 MeV, and spatial and temporal size, respectively 32 a and 64 a,
generated by the JLab/W&M collaboration.

We used 227 configurations gauge separated by 10 HMC trajectories and 64
temporal sources, and studied the effect of the projection on two different spatial
momentum classes: (0, 0, 0), and (0, 0, pz).
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Results for the GEVP

Momentum (0,0,0)
Best operators:

N 2SS
1
2
+
, N 2SM

1
2
+
, N 2P∗

M
1
2
+
.

Standard Projected
t0 χ/d.o.f. aE0 A0 aE ′

0 χ/d.o.f. aE0 A0 aE ′
0

4 1.52 0.5311(13) 0.046(6) 1.117(61) 3.28 0.5308(19) 0.090(14) 0.911(61)
5 1.30 0.5310(13) 0.026(5) 1.117(61) 3.09 0.5301(21) 0.066(17) 0.862(71)
6 1.04 0.5310(14) 0.014(4) 1.117(61) 3.35 0.5324(10) 0.026(3) 1.063(24)
7 1.08 0.5325(11) 0.004(1) 1.117(61) 2.92 0.5322(11) 0.016(2) 1.057(23)

Table: Principal correlator fit results for the static two-points correlator.

λn(t, t0) = (1 − An)e−En(t−t0) + Ane−E′
n(t−t0). (16)
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Results for the GEVP

Momentum (0,0,0)

Figure: Standard GEVP results at t0 = 6
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Results for the GEVP

Momentum (0,0,0)

Figure: Projected-GEVP result t0 = 6
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Results for the GEVP

Momentum (0,0,1)
Best operators:

N 2SS
1
2
+
, N 2P∗

M
1
2
+
, N 4P∗

M
1
2
+
.

Standard Projected
t0 χ/d.o.f. aE0 A0 aE ′

0 χ/d.o.f. aE0 A0 aE ′
0

4 2.81 0.5674(16) 0.061(8) 1.071(53) 2.24 0.5669(13) 0.052(5) 1.079(26)
5 2.86 0.5676(15) 0.037(7) 1.080(53) 2.23 0.5668(13) 0.032(4) 1.079(26)
6 2.74 0.5682(14) 0.020(5) 1.105(54) 2.21 0.5668(13) 0.019(3) 1.079(26)
7 2.32 0.5685(14) 0.011(3) 1.121(52) 2.17 0.5667(13) 0.012(2) 1.079(26)

Table: Principal correlator fit results for the two-points correlator with momentum
p = (0, 0, 1).

λn(t, t0) = (1 − An)e−En(t−t0) + Ane−E′
n(t−t0). (16)
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Results for the GEVP

Momentum (0,0,1)

Figure: Standard GEVP results at t0 = 6
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Results for the GEVP

Momentum (0,0,1)

Figure: Projected-GEVP result t0 = 6
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Results for the GEVP

Momentum (0,0,2)
Best operators:

N 2SS
1
2
+
, N 2P∗

M
1
2
+
, N 4P∗

M
1
2
+
.

Standard Projected
t0 χ/d.o.f. aE0 A0 aE ′

0 χ/d.o.f. aE0 A0 aE ′
0

4 0.89 0.6585(28) 0.084(15) 1.153(70) 1.65 0.6584(25) 0.132(13) 1.136(36)
5 0.89 0.6587(29) 0.051(13) 1.162(74) 1.65 0.6585(25) 0.086(11) 1.137(36)
6 0.58 0.6589(28) 0.030(10) 1.174(74) 1.65 0.6585(25) 0.055(9) 1.137(36)
7 0.41 0.6576(30) 0.021(8) 1.151(72) 1.67 0.6585(25) 0.035(7) 1.138(36)

Table: Principal correlator fit results for the two-points correlator with momentum
p = (0, 0, 1).

λn(t, t0) = (1 − An)e−En(t−t0) + Ane−E′
n(t−t0). (16)
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Results for the GEVP

Momentum (0,0,2)

Figure: Standard GEVP results at t0 = 6
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Results for the GEVP

Momentum (0,0,2)

Figure: Projected-GEVP result t0 = 6
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Conclusions

For the explored value of lattice spacing and pion Mass, the improvement on the
GEVP fits due to the projection on the most relevant operator subspace, if present
at all, is marginal.

However, it is not possible to exclude that such strategies could provide an
improvement moving toward the physical point and the continuum limit, where
excited states are closer to the lowest lying ones, and a better suppression of their
contribution would be more relevant.
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