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Form factor definitions

For B, — J /v, the non-zero matrix elements are parameterised in terms of local
hadronic form factors. For the vector and axial-vector these are given by
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Previous HPQCD calculation: 2007.06957

» 24141 MILC HISQ gluon configurations, a = 0.09fm, 0.06fm, 0.045fm
» Physical pions on a = 0.09fm ensemble
» HISQ charm and heavy valence quarks, with 1.3am. < am; < 0.9am;,

Matrix elements extracted from fits to two-point and three-point functions
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where the oscillating contributions come from our use of staggered quarks.

Voo ~ (J/9(p', M| J|Bz (p)) = F(ame, amy, g2, My, , M3)
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Previous HPQCD calculation: 2007.06957

Form factors then extrapolated to physical continuum using fit to pseudo-BGL
parameterisation, excluding outer functions
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» Omission of outer functions, which depend on z and mj,, makes choice of priors
unclear.

where

with A,(LO) =1 and

» Ideally include outer functions which depend on susceptibilities, x.

» For b — ¢, susceptibilities are well known perturbatively, but for b — light
nonperturbative condensate effects are important

> we compute be susceptibilities nonperturbatively on lattice before moving on to bs
and bu/bd
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be Susceptibilities: 2405.01390

Susceptibilities are defined in terms of subtracted polarisation tensors for current ji,
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Dispersive parameterisations like BGL use the optical theorem to write the imaginary
part of the polarisation tensor as
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and crossing symmetry to relate the 0 + J — 2 matrix elements to the 1 + J — 1
hadronic form factors F, arriving at an expression of the form:
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be Susceptibilities: 2405.01390

> Compute x directly on the lattice (e.g. Martinelli et al. 2105.07851) from time
moments of Euclidean correlation functions
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P> We will use these susceptibilities to perform a fully dispersively bounded fit to
new data for B, — J/
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B, — J /¢ Update: Dispersive Fit
tx = (Mp, + M;,,)? is above 2-particle threshold ¢ty = (Mp+ 4+ Mp)?.
Following 2305.06301, we use orthonormal polynomials on unit circle,
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The dispersive parameterisation is then

FY( )= PY(Z)¢Y Za Pz

where PY (2) = [, 2(¢?, t+, M2ole ;) are Blaschke factors and ¢ are outer functions,
which depend on the susceptlblf

ties, X, and are analytic on the open unit disk in z.

To determine M1e,; we use the
lattice H. masses, extracted from
correlator fits, and the physical-
continuum splittings between Mp,
and the be poles,
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With this prescription, none of the
poles cross threshold
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B, — J /¢ Update: Dispersive Fit

We expand the a, appearing in the physical continuum parameterisation,
FY(z a

to allow for dependence on mj;, and m masses:
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The dispersive bounds then allow us to take priors of 0+ 1 for each «,, where we also
truncate the sum at O(z3).
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HPQCD 2304.03137

Discretisation effects included at the level of matrix elements as
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This is important for the noisy form factors, such as As, where we have
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where J and J’ are O(1) matrix elements.
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B, — J /v Update: Results

Update includes increase in time sources on each ensemble and additional a = 0.06fm

ensemble with physical pions. a = 0.03fm ensemble also in progress.
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Data points here are corrected to better reflect fit quality:
Fcorrected — Fdata + (thys _ Ffit)
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B. — J /v Update: Preliminary Dispersive Fit

B.— J/v B, = Jj& B, = Jj¢
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Also have good control over the heavy-HISQ extrapolation for the tensor.
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Comparison to 2007.06957

%2 reduction in uncertainty for 1¥ FFs vs 2007.06957, some change in shape.

Shift in R(J/¢) :
0.2582(38) — 0.2674(31) (prelim.)

and F, :

0.4416(92) — 0.4510(88) (prelim.)

Seems to go against arguments that
R(J/v) and Fp, should move move in
opposite directions
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Conclusions and outlook

» Update of B, — J/1) form factors near completion, with large reduction in
uncertainty for 17 currents

» a = 0.03fm ensemble in progress and stability analysis still to do

> bc susceptibilities now computed (2405.01390), bs and bl susceptibilities now
underway

» OQuter functions should be included!

Thanks for listening!
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