

Heavy-light Meson Decay Constants and Hyperfine Splittings with the Heavy-HISQ Method

Christine Davies

Judd Harrison Kerr Miller* Antonio Smecca

University of Glasgow HPQCD

Tuesday, 30th July

Lattice Conference 2024

*speaker

What We Are Researching

Why

Heavy-light (Vector) Mesons

Vector and tensor decay constants

Vector:
$$\left\langle 0 \left| V_{\mu}^{(s)} \right| H_{(s)}^{*}(p) \right\rangle \equiv M_{H_{(s)}^{*}} f_{H_{(s)}^{*}} \epsilon_{\mu}(p),$$

Tensor: $\left\langle 0 \left| Z_{T}^{\overline{\text{MS}}} T_{\alpha\beta}^{(s)} \right| H_{(s)}^{*}(p) \right\rangle \equiv i f_{H_{(s)}^{*}}^{T} (\epsilon_{\alpha} p_{\beta} - \epsilon_{\beta} p_{\alpha}),$

with
$$V^{(s)}_{\mu}=ar{q}\gamma_{\mu}h; \quad T^{(s)}_{lphaeta}=ar{q}\sigma_{lphaeta}h; \quad h=b,c; \quad ar{q}=ar{u}/ar{d},ar{s}$$

► Hyperfine splittings:
$$\Delta_{H^*_{(s)}-H_{(s)}} = M_{H^*_{(s)}} - M_{H_{(s)}}$$

Why Are We Interested?

Why

Results 000000000

Precision tests of the Standard Model

Precision tests of the Standard Model

Decay constants:

- ► Can study CKM matrix elements (e.g. *V*_{cs}, *V*_{cd})
- Appear in dispersive parametrisations of form factors
- Sensitivity to potential New Physics
 - FCNCs (e.g. $b \rightarrow s, b \rightarrow d$) suppressed in SM
 - Can constrain high-scale contributions to interactions via WET effective Wilson coefficients

Precision tests of the Standard Model

Decay constants:

- ► Can study CKM matrix elements (e.g. *V_{cs}*, *V_{cd}*)
- Appear in dispersive parametrisations of form factors
- Sensitivity to potential New Physics
 - FCNCs (e.g. $b \rightarrow s, b \rightarrow d$) suppressed in SM
 - Can constrain high-scale contributions to interactions via WET effective Wilson coefficients

Hyperfine splittings:

- Easy access on the lattice
- Another precision observable for test against experiment
- Important phenomenological input in, e.g., HQET calculations

Lattice Calculation

Why

Set-up Details

- 2nd-generation MILC $n_f = 2 + 1 + 1$
- Highly Improved Staggered Quark (HISQ) action
- 5 lattice spacings across 10 ensembles: 0.15 fm down to 0.045 fm
- ▶ Physical pions on 5 ensembles (0.15 fm 0.06 fm); unphysically heavy pions (m_l = m_s/5) on the other 5
- Strange valence tuned using η_s [1303.1670]
- Charm valence tuned using η_c pure QCD, connected diagram value [2305.06231]
- Heavy-HISQ method: $m_c \leq m_h \leq m_b$

Why

Results

Lattice Current Renormalisation

Vector and tensor renormalisation factors previously calculated by members of HPQCD

- Vector renormalisation, Z_V, calculated in 1909.00756
 Non-perturbative, in RI-SMOM scheme
- Scale-dependent tensor renormalisation, $Z_T^c(\mu', \mu)$, calculated in 2008.02024

▶ Non-perturbative, matched to $\overline{\text{MS}}$ via RI-SMOM at scale μ'

Results

Why

Results • 00000000

Introduction to Ratios

- V/P, T/V for both $H^{(*)}$ and $H_s^{(*)}$
- HQET-inspired functional form
- Correlations provide higher precision

$$\begin{split} \frac{f_{H^*_{(s)}}^{(T)}(\mu)}{f_{H^{(*)}_{(s)}}} &= 1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s(\hat{m}_h)}{\pi}\right)^n \\ &+ \mathcal{N}_{(s)} \sum_{i,j,k,l=0}^3 c'_{ijkl} \left(\frac{\Lambda_{\text{QCD}}}{M_{H_s}}\right)^i (a\Lambda_{\text{QCD}})^{2j} \left(\frac{am_h}{\pi}\right)^{2k} \left(\frac{M_{\pi(K)}}{\Lambda_{\chi}}\right)^{2l} \end{split}$$

Why

Results

High-Precision Ratios of Decay Constants

Why

Results

High-Precision Ratios of Decay Constants

Why

Calculation

Introduction to Double Ratios

- $H_s^{(*)}$ -to- $H^{(*)}$ ratios of V/P, T/V ratios
- Can combine with H^(*) ratios to obtain higher-precision H^(*) ratios

• X is
$$(f_{H_s^*}/f_{H_s}) / (f_{H^*}/f_H)$$
 or $(f_{H_s^*}^T/f_{H_s^*}) / (f_{H^*}^T/f_{H^*})$:

$$X = 1 + \mathcal{N}_s \left(\frac{M_K^2 - M_\pi^2}{\Lambda_\chi^2}\right) \sum_{i, j=0}^3 c_{ij} \left(\frac{\Lambda_{\text{QCD}}}{M_{H_s}}\right)^i (a\Lambda_{\text{QCD}})^{2j},$$

with $c_{00} = 0$ to ensure the correct heavy-quark limit.

Why

Results

Double Ratios (i.e., ratios of ratios)

Why

Calculation

Results

Double Ratios (i.e., ratios of ratios)

Calcul

Introduction to Hyperfine Splittings and Ratio

Why

- Hyperfine splittings: $c_{000l} = 0 \ \forall l$
- Ratio: c_{00} not constrained to 0
- Experimental data points (from PDG) on upcoming plots

$$\Delta_{H^*_{(s)}-H_{(s)}} = \mathcal{N}_{(s)} \sum_{i,j,k,l=0}^{3} c_{ijkl} \left(\frac{\Lambda_{\mathsf{QCD}}}{M_{H_s}}\right)^i (a\Lambda_{\mathsf{QCD}})^{2j} \left(\frac{am_h}{\pi}\right)^{2k} \left(\frac{M_{\pi(K)}}{\Lambda_{\chi}}\right)^{2l}$$

$$\frac{\Delta_{H_s^* - H_s}}{\Delta_{H^* - H}} = 1 + \mathcal{N}_s \left(\frac{M_K^2 - M_\pi^2}{\Lambda_\chi^2}\right) \sum_{i, j=0}^3 c_{ij} \left(\frac{\Lambda_{\mathsf{QCD}}}{M_{H_s}}\right)^i \left(a\Lambda_{\mathsf{QCD}}\right)^{2j}$$

Why

Calculation

Results

Hyperfine Splittings

Why

Hyperfine Splitting Ratio

Calculatio

PRELIMINARY

Decay constant ratios:

$$\frac{f_{D^*}}{f_D} = 1.061(17), \frac{f_{D^*}^T}{f_{D^*}} = 0.906(19), \frac{f_{B^*}}{f_B} = 0.9790(72), \frac{f_{B^*}^T}{f_{B^*}} = 0.9491(85)$$
$$\frac{f_{D^*_s}}{f_{D_s}} = 1.062(13), \frac{f_{D^*_s}^T}{f_{D^*_s}} = 0.912(14), \frac{f_{B^*_s}}{f_{B_s}} = 0.9801(58), \frac{f_{B^*_s}}{f_{B^*_s}} = 0.9513(64)$$

Why

Hyperfine splittings (GeV):

$$\Delta_{D^*-D} = 0.1468(32), \quad \Delta_{B^*-B} = 0.0519(17)$$

$$\Delta_{D^*_s-D_s} = 0.1449(21), \quad \Delta_{B^*_s-B_s} = 0.0528(14)$$

Why

Calculation

Thank you for your time and attention.

If you'd like to know more, speak to me or email k.miller.l@research.gla.ac.uk

Questions?

Backup Slides

Why

Calculation

Results 000000000

Backup – Example Showing Effective Wilson Coefficients

$$\Gamma(B_{s}^{*} \to \ell^{+}\ell^{-}) = \frac{G_{F}^{2}|\lambda_{ls}|^{2}\alpha_{\rm em}^{2}}{96\pi^{3}}M_{B_{s}^{*}}f_{B_{s}^{*}}^{2} \times \left(\left| C_{9}^{\rm eff} + 2\frac{m_{b}f_{B_{s}^{*}}^{T}}{M_{B_{s}^{*}}f_{B_{s}^{*}}}C_{7}^{\rm eff} \right|^{2} + |C_{10}|^{2} \right)$$

Why

Calculation

Results 000000000

Backup – LO HQET

$$c_1^{V/P} = -2/3, \quad c_1^{T/V} = 0$$

 c_2^R , c_3^R are non-trivial functions of $x = m_c^{\text{sea}}/m_h^{\text{pole}}$ and its logarithms – calculated using 0911.3356

Why

Calculation

Results

Backup – Experimental Hyperfine Splitting Values

$$\Delta_{D^*-D} = 0.142014(30), \quad \Delta_{B^*-B} = 0.04518(20)$$

$$\Delta_{D^*_s-D_s} = 0.1438(4), \qquad \Delta_{B^*_s-B_s} = 0.0485(14)$$