

[What](#page-1-0) **[Why](#page-3-0) [Calculation](#page-7-0)** [Results](#page-10-0)

Heavy-light Meson Decay Constants and Hyperfine Splittings with the Heavy-HISQ Method

Christine Davies Judd Harrison **Kerr Miller*** Antonio Smecca

University of Glasgow **HPOCD**

Tuesday, 30th July

Lattice Conference 2024

***speaker**

[What We Are Researching](#page-1-0)

[What](#page-1-0) Miny [Calculation](#page-7-0) [Results](#page-10-0)

Heavy-light (Vector) Mesons

▶ Vector and tensor decay constants

Vector:
$$
\langle 0 | V_{\mu}^{(s)} | H_{(s)}^{*}(p) \rangle \equiv M_{H_{(s)}^{*}} f_{H_{(s)}^{*}} \epsilon_{\mu}(p),
$$

Tensor: $\langle 0 | Z_{T}^{\overline{\text{MS}}} T_{\alpha\beta}^{(s)} | H_{(s)}^{*}(p) \rangle \equiv i f_{H_{(s)}^{*}}^{T} (\epsilon_{\alpha} p_{\beta} - \epsilon_{\beta} p_{\alpha}),$

with
$$
V_{\mu}^{(s)} = \bar{q}\gamma_{\mu}h
$$
; $T_{\alpha\beta}^{(s)} = \bar{q}\sigma_{\alpha\beta}h$; $h = b, c$; $\bar{q} = \bar{u}/\bar{d}, \bar{s}$

$$
\blacktriangleright \text{ Hyperfine splittings: } \Delta_{H^*_{(s)} - H_{(s)}} = M_{H^*_{(s)}} - M_{H_{(s)}}
$$

[Why Are We Interested?](#page-3-0)

Precision tests of the Standard Model

Precision tests of the Standard Model

Decay constants:

- \triangleright Can study CKM matrix elements (e.g. V_{cs} , V_{cd})
- \triangleright Appear in dispersive parametrisations of form factors
- \triangleright Sensitivity to potential New Physics
	- ▶ FCNCs (e.g. $b \rightarrow s$, $b \rightarrow d$) suppressed in SM
	- \triangleright Can constrain high-scale contributions to interactions via WET effective Wilson coefficients

Precision tests of the Standard Model

Decay constants:

- \triangleright Can study CKM matrix elements (e.g. V_{cs} , V_{cd})
- \triangleright Appear in dispersive parametrisations of form factors
- \blacktriangleright Sensitivity to potential New Physics
	- ▶ FCNCs (e.g. $b \rightarrow s$, $b \rightarrow d$) suppressed in SM
	- \triangleright Can constrain high-scale contributions to interactions via WET effective Wilson coefficients

Hyperfine splittings:

- \blacktriangleright Easy access on the lattice
- ▶ Another precision observable for test against experiment
- \triangleright Important phenomenological input in, e.g., HQET calculations

[Lattice Calculation](#page-7-0)

Set-up Details

- ▶ 2nd-generation MILC $n_f = 2 + 1 + 1$
- ▶ Highly Improved Staggered Quark (HISQ) action
- \triangleright 5 lattice spacings across 10 ensembles: 0.15 fm down to 0.045 fm
- \blacktriangleright Physical pions on 5 ensembles (0.15 fm 0.06 fm); unphysically heavy pions ($m_l = m_s/5$) on the other 5
- Strange valence tuned using η_s [1303.1670]
- \triangleright Charm valence tuned using η_c pure QCD, connected diagram value [2305.06231]
- ▶ Heavy-HISQ method: $m_c \leq m_h \leq m_b$

Lattice Current Renormalisation

Vector and tensor renormalisation factors previously calculated by members of HPQCD

- ▶ Vector renormalisation, *ZV*, calculated in 1909.00756 ▶ Non-perturbative, in RI-SMOM scheme
- Scale-dependent tensor renormalisation, $Z_T^c(\mu', \mu)$, calculated in 2008.02024

 \blacktriangleright Non-perturbative, matched to $\overline{\text{MS}}$ via RI-SMOM at scale μ'

[Results](#page-10-0)

Introduction to Ratios

- ▶ V/P , T/V for both $H^{(*)}$ and $H_s^{(*)}$
- ▶ HQET-inspired functional form
- \triangleright Correlations provide higher precision

$$
\frac{f_{H_{(s)}^*}^{(T)}(\mu)}{f_{H_{(s)}^{(*)}}} = 1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s(\hat{m}_h)}{\pi} \right)^n + \mathcal{N}_{(s)} \sum_{i,j,k,l=0}^3 c'_{ijkl} \left(\frac{\Lambda_{\text{QCD}}}{M_{H_s}} \right)^i (a\Lambda_{\text{QCD}})^{2j} \left(\frac{am_h}{\pi} \right)^{2k} \left(\frac{M_{\pi(K)}}{\Lambda_{\chi}} \right)^{2l}
$$

[What](#page-1-0) [Why](#page-3-0) [Calculation](#page-7-0) [Results](#page-10-0)

High-Precision Ratios of Decay Constants

[What](#page-1-0) [Why](#page-3-0) [Calculation](#page-7-0) [Results](#page-10-0)

High-Precision Ratios of Decay Constants

Introduction to Double Ratios

- \blacktriangleright $H_s^{(*)}$ -to- $H^{(*)}$ ratios of $V/P, T/V$ ratios
- ▶ Can combine with $H_s^{(*)}$ ratios to obtain higher-precision $H^{(\ast)}$ ratios

$$
\blacktriangleright \ \ X \ \ \text{is} \ \ \left(f_{H^*_s}/f_{H_s}\right)\Big/\left(f_{H^*}/f_{H}\right) \ \ \text{or} \ \ \left(f_{H^*_s}^T/f_{H^*}\right)\Big/\left(f_{H^*}^T/f_{H^*}\right):
$$

$$
X = 1 + \mathcal{N}_s \left(\frac{M_K^2 - M_\pi^2}{\Lambda_\chi^2} \right) \sum_{i,j=0}^3 c_{ij} \left(\frac{\Lambda_{\text{QCD}}}{M_{H_s}} \right)^i \left(a \Lambda_{\text{QCD}} \right)^{2j},
$$

with $c_{00} = 0$ to ensure the correct heavy-quark limit.

[What](#page-1-0) [Why](#page-3-0) [Calculation](#page-7-0) [Results](#page-10-0)

Double Ratios (i.e., ratios of ratios)

[What](#page-1-0) [Why](#page-3-0) [Calculation](#page-7-0) [Results](#page-10-0)

Double Ratios (i.e., ratios of ratios)

[What](#page-1-0) **[Calculation](#page-7-0) [Results](#page-10-0) Calculation Results**

Introduction to Hyperfine Splittings and Ratio

- ▶ Hyperfine splittings: $c_{000l} = 0$ $\forall l$
- \blacktriangleright Ratio: c_{00} not constrained to 0
- \triangleright Experimental data points (from PDG) on upcoming plots

$$
\Delta_{H_{(s)}^* - H_{(s)}} = \mathcal{N}_{(s)} \sum_{i,j,k,l=0}^3 c_{ijkl} \left(\frac{\Lambda_{\text{QCD}}}{M_{H_s}}\right)^i (a \Lambda_{\text{QCD}})^{2j} \left(\frac{am_h}{\pi}\right)^{2k} \left(\frac{M_{\pi(K)}}{\Lambda_{\chi}}\right)^{2l}
$$

$$
\frac{\Delta_{H_s^* - H_s}}{\Delta_{H^* - H}} = 1 + \mathcal{N}_s \left(\frac{M_K^2 - M_\pi^2}{\Lambda_\chi^2} \right) \sum_{i,j=0}^3 c_{ij} \left(\frac{\Lambda_{\text{QCD}}}{M_{H_s}} \right)^i (a\Lambda_{\text{QCD}})^{2j}
$$

Hyperfine Splittings

Hyperfine Splitting Ratio

PRELIMINARY

Decay constant ratios:

$$
\frac{f_{D^*}}{f_D} = 1.061(17), \frac{f_{D^*}^T}{f_{D^*}} = 0.906(19), \frac{f_{B^*}}{f_B} = 0.9790(72), \frac{f_{B^*}^T}{f_{B^*}} = 0.9491(85)
$$
\n
$$
\frac{f_{D_s^*}}{f_{D_s}} = 1.062(13), \frac{f_{D_s^*}^T}{f_{D_s^*}} = 0.912(14), \frac{f_{B_s^*}^T}{f_{B_s}} = 0.9801(58), \frac{f_{B_s^*}^T}{f_{B_s^*}} = 0.9513(64)
$$

Hyperfine splittings (GeV):

$$
\Delta_{D^*-D} = 0.1468(32), \quad \Delta_{B^*-B} = 0.0519(17)
$$

$$
\Delta_{D_s^*-D_s} = 0.1449(21), \quad \Delta_{B_s^*-B_s} = 0.0528(14)
$$

[What](#page-1-0) **[Why](#page-3-0) [Calculation](#page-7-0)** [Results](#page-10-0)

Thank you for your time and attention.

If you'd like to know more, speak to me or email k.miller.1@research.gla.ac.uk

Questions?

[Backup Slides](#page-22-0)

[What](#page-1-0) **[Why](#page-3-0) [Calculation](#page-7-0)** [Results](#page-10-0)

Backup – Example Showing Effective Wilson **Coefficients**

$$
\Gamma(B_s^* \to \ell^+ \ell^-) = \frac{G_F^2 |\lambda_{ts}|^2 \alpha_{em}^2}{96\pi^3} M_{B_s^*} f_{B_s^*}^2
$$

$$
\times \left(\left| C_9^{\text{eff}} + 2 \frac{m_b f_{B_s^*}^T}{M_{B_s^*} f_{B_s^*}} C_7^{\text{eff}} \right|^2 + |C_{10}|^2 \right)
$$

[What](#page-1-0) **[Why](#page-3-0) [Calculation](#page-7-0)** [Results](#page-10-0)

Backup – LO HQET

$$
c_1^{V/P} = -2/3, \quad c_1^{T/V} = 0
$$

 $c_2^R, \; c_3^R$ are non-trivial functions of $x = m_c^{\sf sea}/m_h^{\sf pole}$ h^{pole} and its logarithms – calculated using 0911.3356

Backup – Experimental Hyperfine Splitting Values

$$
\Delta_{D^*-D} = 0.142014(30), \quad \Delta_{B^*-B} = 0.04518(20)
$$

$$
\Delta_{D_s^*-D_s} = 0.1438(4), \qquad \Delta_{B_s^*-B_s} = 0.0485(14)
$$