Transverse Force Distributions in the Proton from Lattice QCD

<u>Josh Crawford</u>¹, Kadir Utku Can¹, Roger Horsley², Paul Rakow³, Gerrit Schierholz⁴, Hinnerk Stüben⁵, Ross Young¹, James Zanotti¹

CSSM/UKQCD/QCDSF Collaboration ¹ The University of Adelaide, School of Physical Sciences ² University of Edinburgh, School of Physics and Astronomy ³ University of Liverpool, Theoretical Physics Division ⁴ Deutsches Elektronen-Synchrotron DESY ⁵ Universität Hamburg

1 August 2024

Colour

Lorentz Forces

Josh Crawford

Introduction

Motivation

- Our understanding of forces in QCD hasn't changed much since the static quark potential.
- High energy scattering off transversely polarised targets yields interesting asymmetries.
- We present distributions of a "colour-Lorentz" force which are consistent with the observed asymmetries.
- This formalism offers a new perspective on forces and confinement in QCD.

Figure: Changing ideas about QCD forces.

Transversely Polarised Deep Inelastic Scattering

- Scatter longitudinally polarised electrons off transversely polarised proton targets.
- Hadronic tensor is parameterised in terms of structure functions:
 - Unpolarised: $F_1(x, Q^2), F_2(x, Q^2).$
 - Polarised: $g_1(x, Q^2), g_2(x, Q^2).$
- g₂ receives contributions from twist-2 and twist-3 operators.
- Transversely polarised DIS allows for the extraction of the higher twist contributions to *g*₂.

 e^{-}

k'

Figure: Feynman diagram for inelastic

electron-proton scattering.

SUBAT

Asymmetries in SIDIS Experiments

- Semi-inclusive: measure one final hadronic state *X*.
- There is an asymmetric distribution of this final state *X*!
- Sivers asymmetry^a experimentally verified for many different final states $(\pi^{\pm}, \pi^{0},...)$
- No consistent understanding of the relationship between higher-twist effects and asymmetries.

Figure: Cartoon setup of asymmetries in SIDIS.

SUBAT

^aSivers, D. Phys. Rev. D. 1991.

Heuristic Approach to the Asymmetries

- Final state interactions (FSIs) cause a transverse momentum asymmetry opposite to transverse position asymmetry.
- Net attractive force "pulls" the struck quark in the direction opposite its position asymmetry.
- Can we image these FSIs? What do they look like? How strong are they?

Figure: Semi-classical cartoon of our force picture, with polarisation axis pointing out of the page.

Colour-

Transverse Forces from DIS

- Transversely polarised DIS allows us to explore higher-twist contributions to observables.
- The twist-3 part of the nucleon structure function $g_2(x, Q^2)$ does not have a single particle interpretation.
- Alternative interpretation: twist-3 matrix elements represent transverse forces¹.

$$3\int_{-1}^{1} dx \, x^2 \tilde{g}_2(x) = d_2 = \frac{1}{2mP^+P^+S^x} \left\langle P, S | \overline{\psi}(0)\gamma^+ g G^{+y}(0)\psi(0) | P, S \right\rangle.$$

• Untangling the gluon field strength tensor component, we find:

$$G^{+y} = \frac{1}{\sqrt{2}} \left(G^{0y} + G^{zy} \right) = -\frac{1}{\sqrt{2}} \left[\vec{E}_c + \vec{v} \times \vec{B}_c \right]^y = -\frac{1}{\sqrt{2}} F^{y}!$$

¹Burkardt, M. *Phys. Rev. D.* 2013. arXiv: hep-ph/1510.03112.

Colour

Lorentz Forces Josh Crawford Introduction Background Methods Results Conclusions References

Developing Position-Space Densities

- Decompose our matrix element into momentum-dependent form factors, $\Phi_i(-\Delta^2)$, much like electromagnetic form factors.
- Taking the 2D Fourier Transform in the Infinite Momentum Frame yields a position-space density².

Figure: Infinite Momentum Frame kinematics.

²Burkardt, M. *Phys. Rev. D*. 2000. arXiv: hep-ph/0005108.

Colour-Lorentz Forces Josh Crawford Introduction Background Methods

Results

Conclusions

References

Recipe for a Density Distribution

Form factor decomposition of our matrix element is³

$$\langle p', s' | \overline{\psi} \gamma^{+} i g G^{+i} \psi | p, s \rangle = \overline{u}(p', s') \bigg[P^{+} \Delta^{i} \gamma^{+} \Phi_{1}(t) + M P^{+} i \sigma^{+i} \Phi_{2}(t) + \frac{1}{M} P^{+} \Delta^{i} i \sigma^{+\Delta} \Phi_{3}(t) \bigg] u(p, s),$$
(1)

where $P^{\mu} = (p'+p)^{\mu}/2$, $\Delta^{\mu} = (p'-p)^{\mu}$, $t = -\Delta^2$ and $\sigma^{\mu\Delta} = \sigma^{\mu\nu}\Delta_{\nu}$.

- **1** Compute off-forward matrix elements on the lattice.
- **2** Compute form factors for a range of momentum transfers.
- **6** Take 2D Fourier transform to visualise forces in transverse impact <u>parameter space.</u>

³Aslan, F., Burkardt, M. and Schlegel, M. *Phys. Rev. D.* 2019. arXiv: hep-ph/1904.03494.

Colour

Lorentz Forces Josh Crawford Introduction Background Methods Results Conclusions References

Full Lattice Details

- Use gauge ensembles generated by CSSM/QCDSF/UKQCD collaborations⁴.
- Fermions described by stout-smeared non-perturbatively $\mathcal{O}(a)$ improved Wilson (SLiNC) action⁵.
- Use tree-level Symanzik improved gluon action.
- All ensembles at SU(3) symmetric point.

N_f	β	$L^3 \times T$	a	m_{π} , m_K	t_{sep}/a	N_{meas}
			(fm)	(MeV)		
2 + 1	5.50	$32^3 \times 64$	0.074	465	11, 13, 15	3528
2 + 1	5.65	$48^3 \times 96$	0.068	412	11, 14, 17	1074
2 + 1	5.95	$48^3 \times 96$	0.052	418	14, 18, 22	1014

⁴Haar, T. R., Nakamura, Y., and Stüben, H. *EPJ Web Conf.* 2018. arXiv: hep-lat/1711.03836.

⁵Cundy, N. et al. *Phys. Rev. D.* 2009. arXiv: hep-lat/0901.3302.

Josh Crawford – Colour-Lorentz Forces

Colour-Lorentz Forces Josh Crawford Introduction

Methods

Results

Conclusions

References

Computing Matrix Elements

Want to compute matrix elements of the twist-3 operator

$$\mathcal{O}_{[\sigma\{\mu]\nu\}}^{[5](q)} = -\frac{g}{6}\overline{\psi}\left(\tilde{G}_{\sigma\mu}\gamma_{\nu} + \tilde{G}_{\sigma\nu}\gamma_{\mu}\right)\psi - \text{traces}$$

where $\{...\}$ ([...]) denotes (anti-)symmetrisation of indices.

• Compute ratios of three- and two-point functions:

$$\mathcal{R} = \frac{C_{3pt}(\mathbf{p}', t; \mathbf{q}, \tau; \mathcal{O})}{C_{2pt}(\mathbf{p}', t)} \left[\frac{C_{2pt}(\mathbf{p}', t) C_{2pt}(\mathbf{p}, \tau) C_{2pt}(\mathbf{p}, t-\tau)}{C_{2pt}(\mathbf{p}, t) C_{2pt}(\mathbf{p}, \tau) C_{2pt}(\mathbf{p}', t-\tau)} \right]^{\frac{1}{2}}$$
$$\mathcal{R} \stackrel{t \gg \tau \gg 0}{\propto} \langle p', s' | \mathcal{O} | p, s \rangle$$

• $\mathcal{O}^{[5]}$ mixes with lower dimensional operators \rightarrow need to compute those matrix elements as well.

Colour

Lorentz Forces

Background Methods Results Conclusions

Two State Ratio Fits

Figure: Ratio fit proportional to the forward matrix element d_2 .

Colour-

Lorentz Forces Josh Crawford Introduction Background Methods Results Conclusions References

Preliminary d_2 Extrapolation

Figure: Continuum extrapolation of $d_2^{(p)}$ and $d_2^{(n)}$.

- Use our three lattice spacings to extrapolate to the continuum.
 - No quark mass effects included.
 - Sensitive to renormalisation procedure and mixing coefficient calculation.
- Renormalise in the RI'-MOM scheme following RQCD procedure^a.
- Running additional lattice spacings to refine this extrapolation.

Colour-Lorentz Forces Josh Crawford

Background

Methods

Results

Conclusions

^aBürger, S. et al. *Phys. Rev. D*. 2022. arXiv: hep-lat/2111.08306.

Computing Form Factors

• Form factor decomposition of our matrix element is⁶

$$\langle p', s' | \overline{\psi} \gamma^{+} i g G^{+i} \psi | p, s \rangle = \overline{u}(p', s') \left[P^{+} \Delta^{i} \gamma^{+} \Phi_{1}(t) + M P^{+} i \sigma^{+i} \Phi_{2}(t) + \frac{1}{M} P^{+} \Delta^{i} i \sigma^{+\Delta} \Phi_{3}(t) \right] u(p, s),$$
 (2)

where $P^{\mu} = (p'+p)^{\mu}/2$, $\Delta^{\mu} = (p'-p)^{\mu}$, $t = -\Delta^2$ and $\sigma^{\mu\Delta} = \sigma^{\mu\nu}\Delta_{\nu}$.

• Model t dependence with an a^2 -corrected dipole function:

$$\Phi_{i}(t) = \frac{\Phi_{i}(0) + b_{i}a^{2}}{\left(1 + t\left(\frac{1}{\Lambda_{i}^{2}} + c_{i}a^{2}\right)\right)^{2}}$$

⁶Aslan, F., Burkardt, M, and Schlegel, M. Phys. Rev. D. 2019. arXiv: hep-ph/1904.03494.

Colour

Lorentz Forces Josh Crawford

Introduction Background Methods Results Conclusions

Colour-

Form Factor Results - Φ_1 and Φ_3

Figure: Results for the Φ_1 form factor.

Figure: Results for the Φ_3 Form Factor.

Lorentz Forces Josh Crawford Introduction Background Methods

Results

Conclusions

Impact Parameter Space Distributions

• Take 2D Fourier transform to visualise in transverse impact parameter space.

$$\mathcal{F}^{i}_{s's}(\mathbf{b}_{\perp}) = \frac{-2\sqrt{2}P^{+}b^{i}\frac{d}{db_{\perp}^{2}}\tilde{\Phi}_{1}(\mathbf{b}_{\perp}^{2})}{+\sqrt{2}m_{N}\epsilon^{ij}S^{j}\tilde{\Phi}_{2}(\mathbf{b}_{\perp}^{2}) - \frac{\sqrt{2}\epsilon^{jk}S^{k}}{m_{N}}\left(2\delta^{ij}\frac{d}{db_{\perp}^{2}}\tilde{\Phi}_{3}(\mathbf{b}_{\perp}^{2}) + 4b^{i}b^{j}\frac{d^{2}}{d(b_{\perp}^{2})^{2}}\tilde{\Phi}_{3}(\mathbf{b}_{\perp}^{2})\right)}$$

Overlay resulting vector field on quark density distributions⁷,

$$\rho(\mathbf{b}_{\perp}) = \frac{1}{2} \bigg[\tilde{F}_1(\mathbf{b}_{\perp}^2) + \frac{b^j \epsilon^{ji} S^i}{M_N} \frac{d}{db_{\perp}^2} \tilde{F}_2(\mathbf{b}_{\perp}^2) \bigg], \quad \tilde{F}(\mathbf{b}_{\perp}^2) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}} F(t)$$

⁷Diehl, M. and Hägler, Ph. Eur. Phys. J. C. 2005. arXiv: hep-ph/0504175.

Colour-

Josh Crawford

Background Methods Results Conclusions References

Visualising Quark Densities and Force Densities

Figure: Force density in an unpolarised proton.

Impact Parameter Space Distributions

• Take 2D Fourier transform to visualise in transverse impact parameter space.

$$\mathcal{F}^{i}_{s's}(\mathbf{b}_{\perp}) = -2\sqrt{2}P^{+}b^{i}\frac{d}{db_{\perp}^{2}}\tilde{\Phi}_{1}(\mathbf{b}_{\perp}^{2})$$

$$+\sqrt{2}m_N\epsilon^{ij}S^j\tilde{\Phi}_2(\mathbf{b}_{\perp}^2) - \frac{\sqrt{2}\epsilon^{jk}S^k}{m_N} \left(2\delta^{ij}\frac{d}{db_{\perp}^2}\tilde{\Phi}_3(\mathbf{b}_{\perp}^2) + 4b^ib^j\frac{d^2}{d(b_{\perp}^2)^2}\tilde{\Phi}_3(\mathbf{b}_{\perp}^2)\right)$$

Overlay resulting vector field on quark density distributions⁸,

$$\rho(\mathbf{b}_{\perp}) = \frac{1}{2} \left[\tilde{F}_1(\mathbf{b}_{\perp}^2) + \frac{b^j \epsilon^{ji} S^i}{M_N} \frac{d}{db_{\perp}^2} \tilde{F}_2(\mathbf{b}_{\perp}^2) \right], \quad \tilde{F}(\mathbf{b}_{\perp}^2) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}} F(t) dt$$

⁸Diehl, M. and Hägler, Ph. Eur. Phys. J. C. 2005. arXiv: hep-ph/0504175.

Colour-Lorentz Forces Josh Crawford Background Methods Results References

Visualising Quark Densities and Force Densities

Figure: Force density in a proton polarised in the \hat{x} direction.

Summary and Conclusions

- Transverse force tomography is a novel perspective on forces in QCD.
- We have produced novel images of the distribution of "colour-Lorentz" forces that act in polarised DIS.
- Force distributions indicate large local forces, on the order of $\sim 3~{\rm GeV/fm}$ $3{\rm x}$ the QCD string tension.
- Expand momentum range to better assess model dependence of forces.
- These images are simple, intuitive representations of how asymmetries can be generated in semi-inclusive DIS.

Colour-Lorentz Forces Josh Crawford Introduction Background Methods Results

Conclusions

References I

- Aslan, F., M Burkardt, and M Schlegel. "Transverse force tomography". In: *Phys. Rev. D* 100 (9 2019). arXiv: hep-ph/1904.03494.
- Burkardt, M. "Impact parameter dependent parton distributions and off-forward parton distributions for $\zeta \rightarrow 0$ ". In: *Phys. Rev. D* 62 (7 2000), p. 071503. arXiv: hep-ph/0005108.
 - "Transverse force on quarks in deep-inelastic scattering". In: *Phys. Rev. D* 88.11 (2013). arXiv: hep-ph/1510.03112.
- Bürger, S. et al. "Lattice results for the longitudinal spin structure and color forces on quarks in a nucleon". In: *Phys. Rev. D* 105.5 (2022). arXiv: hep-lat/2111.08306.
 - Cundy, N. et al. "Non-perturbative improvement of stout-smeared three flavour clover fermions". In: *Phys. Rev. D* 79 (2009), p. 094507. arXiv: hep-lat/0901.3302.

Colour-

Josh Crawford

Introduction Background Methods Results Conclusions References

References II

- Diehl, M. and Ph Hägler. "Spin densities in the transverse plane and generalized transversity distributions". In: *Eur. Phys. J. C* 44.1 (2005), pp. 87–101. arXiv: hep-ph/0504175.
- Edwards, Robert G. and Bálint Joó. "The Chroma Software System for Lattice QCD". In: Nuclear Physics B - Proceedings Supplements 140 (2005), pp. 832–834.
- Haar, T. R., Y. Nakamura, and H. Stüben. "An update on the BQCD Hybrid Monte Carlo program". In: *EPJ Web Conf.* 175 (2018), p. 14011. arXiv: hep-lat/1711.03836.
- Sivers, D. "Hard-scattering scaling laws for single-spin production asymmetries".
 In: *Phys. Rev. D* 43 (1 1991), pp. 261-263. DOI: 10.1103/PhysRevD.43.261.
 URL: https://link.aps.org/doi/10.1103/PhysRevD.43.261.

SURATAMI

Acknowledgements

The numerical configuration generation (using the BQCD lattice QCD program) and data analysis using the software package were performed using the Cambridge Service for Data Driven Discovery (CSD3), the Gauss Centre for Supercomputing (GCS) supercomputers JUQUEEN and JUWELS (John von Neumann Institute for Computing, NIC, Jülich, Germany), resources provided by the North-German Supercomputer Alliance (HLRN), the National Computer Infrastructure (NCI National Facility in Canberra, Australia supported by the Australian Commonwealth Government), the Pawsey Supercomputing Centre, which is supported by the Australian Government and the Government of Western Australia and the Phoenix HPC service (University of Adelaide).

Colour-Lorentz Forces Josh Crawford Introduction Background Methods Results Conclusions References

Operator Mixing and Renormalisation

- Our operator mixes with lower dimensional operators, contaminating the signal.
- We incorporate this mixing when renormalising in the RI'-MOM scheme:

$$\mathcal{O}_{R}^{[5]}(\mu) = Z^{[5]}(a\mu) \left(\mathcal{O}^{[5]}(a) + \frac{1}{a} \frac{Z^{\sigma}(a\mu)}{Z^{[5]}(a\mu)} \mathcal{O}^{\sigma}(a) \right)$$

- Mixing coefficient determined both through LPT and non-perturbatively.
- Multiplicative renormalisation constant $Z^{[5]}(a\mu)$ computed using the procedure outlined by RQCD⁹.
- Cannot match to $\overline{\text{MS}}$ at this time as perturbative calculations not available.

⁹Bürger, S. et al. *Phys. Rev. D*. 2022. arXiv: hep-lat/2111.08306.

Colour-

Josh Crawford

Introduction Background Methods Results Conclusions

References

Mixing Coefficient Calculation

Figure: Non-perturbative calculation of the mixing coefficient $Z^{\sigma}/Z^{[5]}$.

• We compute the amputated 3-pt Greens function on the lattice and match it to the continuum tree-level result:

$$\operatorname{Tr}\left[\Gamma_{R}^{[5]}(p)\Gamma_{tree}^{\sigma}(p)^{-1}\right]_{p^{2}=\mu^{2}}=0$$

$$\frac{Z^{\sigma}}{Z^{[5]}} = \frac{A}{(ap)^2} + B + C(ap)^2 + D(ap)^4$$

• Extract the constant piece *B*.

Colour-Lorentz Forces Josh Crawford Introduction Background Methods Results Conclusions References

RI'-MOM Procedure¹⁰

() Compute $Z^{[5]}$ on each lattice by matching to tree-level results,

$$\frac{1}{12} \operatorname{Tr} \left[\Gamma_R^{[5]}(p) \Gamma_{tree}^{[5]}(p)^{-1} \right]_{p^2 = \mu^2} = 1.$$

- 2 Choose a reference scale $\mu_0 = 2$ GeV and compute the ratio $Z^{[5]}(\mu)/Z^{[5]}(\mu_0)$ on all lattices.
- **③** Extrapolate this ratio to the continuum and define it as $R(\mu, \mu_0)$.
- ${\it O}~Z^{[5]}(\mu')$ for each lattice, at some intermediate scale μ' , is then calculated as

$$Z^{[5]}(\mu') = R(\mu', \mu_0) Z^{[5]}(\mu_0).$$

(5) Evolve to some common scale μ through the one-loop formula,

$$Z^{[5]}(\mu) = \left(\frac{\alpha_s(\mu')}{\alpha_s(\mu)}\right)^{-B} Z^{[5]}(\mu'), \quad B = \frac{1}{\frac{11}{3}N_c - \frac{2}{3}N_f} \left(3N_c - \frac{1}{6}\left(N_c - \frac{1}{N_c}\right)\right)$$

¹⁰Bürger, S. et al. *Phys. Rev. D*. 2022. arXiv: hep-lat/2111.08306.

Colour-

Josh Crawford Introduction Background Methods Results Conclusions References

a^2 Extrapolation for d_2

Colour-Lorentz Forces Josh Crawford References

Φ_2 Form Factor and Resulting Force Distribution

Figure: Results for the Φ_2 Form Factor.

Colour-

Model Dependence and Force Magnitude Estimates

- Operator is $\overline{\psi}\gamma^+ g G^{+i}\psi$, but the force comes from $G^{+i} \to$ need to remove quark density dependence.
- Assume the weighted force factorises:

 $\mathcal{F}^i_{s's}(\mathbf{b}_\perp) = \rho_{s's}(\mathbf{b}_\perp) F^i_{s's}(\mathbf{b}_\perp)$

Assess model dependence of force magnitudes using n-order pole fits

$$\Phi_i(t) = \frac{\Phi_i(0)}{\left(1 + \frac{t}{\Lambda_i^2}\right)^n}, \quad n = 2, 3, 4.$$

- For scale, continuum QCD string tension $\approx 1~\text{GeV}/\text{fm}$

Colour Lorentz Forces Josh Crawford References

Model Dependence and Force Magnitude Estimates

Figure: Model-dependent estimates for force magnitude due to Φ_1 form factor.

2.5

1.0

0.5

 $F_1(b)$ [GeV/fm] 0

> Figure: Model-dependent estimates for force magnitude due to Φ_3 form factor.

Colour-