Systematic effects in the lattice calculation of inclusive semileptonic decays

Ryan Kellermann

In collaboration with Alessandro Barone, Ahmed Elgaziari, Shoji Hashimoto, Zhi Hu, Andreas Jüttner, Takashi Kaneko

High Energy Accelerator Research Organization (KEK)

Lattice2024, August 1st, 2024

Today's agenda

- Quick review on lattice formulation of inclusive decays
- Systematic errors in the analysis
 - 1. Finite-volume effects
 - 2. Finite polynomial approximation
- Summary & Outlook

Introduction

On-going analysis of inclusive semileptonic decay rate $D_s \rightarrow X_s \ell \nu_\ell$

On-going analysis of inclusive semileptonic decay rate $D_s \rightarrow X_s \ell \nu_\ell$

Idea [P. Gambino & S. Hashimoto, 2005.13730]

Lattice 2024, R. Kellermann, Inclusive Decays

Inclusive Decays - Continuum

Total decay rate [2211.16830, 2305.14092]

$$\Gamma \sim \int_0^{\boldsymbol{q}_{max}^2} d\boldsymbol{q}^2 \sqrt{\boldsymbol{q}^2} \sum_{l=0}^2 \bar{X}^{(l)}(\boldsymbol{q}^2)$$

 $\overline{X}^{(l)}(\boldsymbol{q}^2)$ integral over energy of hadronic final states

$$\bar{X}^{(l)}(\boldsymbol{q}^2) = \int_{\omega_0}^{\infty} d\omega \ W^{\mu\nu}(\boldsymbol{q},\omega) K^{(l)}_{\mu\nu}(\boldsymbol{q},\omega) \\ k^{(l)}_{\mu\nu}(\boldsymbol{q},\omega) \theta(\omega_{\max} - \omega) \\ \text{Analytically known Step function} \\ l\text{-th power of } \omega \text{ and } \boldsymbol{q}^2$$

Inclusive decays – Lattice

- t_{src}, t_2, t_{snk} fixed $t = t_2 t_1$
- $t_{src} \leq t_1 \leq t_2$

$$C_{\mu\nu}(\boldsymbol{q},t) = \int_0^\infty d\omega \, W_{\mu\nu}(\boldsymbol{q},\omega) \, e^{-\omega t}$$

Inclusive decays – Lattice

•
$$t_{src}, t_2, t_{snk}$$
 fixed • $t = t_2 - t_1$

•
$$t_{src} \leq t_1 \leq t_2$$

$$C_{\mu\nu}(\boldsymbol{q},t) = \int_0^\infty d\omega \, W_{\mu\nu}(\boldsymbol{q},\omega) \, e^{-\omega t}$$

Continuum expression

Simulations conducted on Fugaku using Grid [P. Boyle et al., https://github.com/Grid] and Hadrons [A. Portelli et al., https://github.com/aportelli/Hadrons] software packages

Lattice setup:

- Lattice size: $48^3 \times 96$
- Lattice Spacing: a = 0.055 fm
- $M_{\pi} \simeq 300 \text{ MeV}$

Simulation:

- 2+1 Möbius domain-wall fermions
- *s*, *c* quarks simulated at near-physical values
- Cover whole kinematical region $\boldsymbol{q} = (0,0,0) \rightarrow (1,1,1)$

Numerical Results

Infinite volume limit? [2312.16442]

In finite volume spectral density is a sum of delta peaks

Computing $\overline{X}_{\sigma}(\boldsymbol{q}^2)$ requires ordered

 $\lim_{\sigma\to 0} \lim_{V\to\infty} \bar{X}_{\sigma}(\boldsymbol{q}^2)$

Necessary data not available

Estimate finite-volume effects using a model (non-interacting two-body states)

Finite volume – Model analysis

 $\overline{X}_{AA}^{\perp}(\boldsymbol{q}^2)$ for $\boldsymbol{q}=(0,0,1)$

Model-based results

$$\bar{X}^{(l)}(\boldsymbol{q}^2) \sim \int_{\omega_0}^{\infty} d\omega \, W^{\mu\nu}(\boldsymbol{q},\omega) k_{\sigma}^{(l)}(\boldsymbol{q},\omega) \theta(\omega_{\rm th}-\omega)$$

Test by (artificially) varying the upper limit of the integral

- Heaviside function
 - Slight volume dependence

Finite volume – Model analysis

 $\overline{X}_{AA}^{\perp}(\boldsymbol{q}^2)$ for $\boldsymbol{q}=(0,0,1)$

Model-based results

$$\bar{X}^{(l)}(\boldsymbol{q}^2) \sim \int_{\omega_0}^{\infty} d\omega \, W^{\mu\nu}(\boldsymbol{q},\omega) k_{\sigma}^{(l)}(\boldsymbol{q},\omega) \theta(\omega_{\rm th}-\omega)$$

Test by (artificially) varying the upper limit of the integral

- Heaviside function
 - Slight volume dependence
- + apply smearing
 - Volume dependence washes out

Finite volume – Model analysis

 $\overline{X}_{AA}^{\perp}(\boldsymbol{q}^2)$ for $\boldsymbol{q}=(0,0,1)$

Model-based results

$$\bar{X}^{(l)}(\boldsymbol{q}^2) \sim \int_{\omega_0}^{\infty} d\omega \, W^{\mu\nu}(\boldsymbol{q},\omega) k_{\sigma}^{(l)}(\boldsymbol{q},\omega) \theta(\omega_{\rm th}-\omega)$$

Test by (artificially) varying the upper limit of the integral

- Heaviside function
 - Slight volume dependence
- + apply smearing
 - Volume dependence washes out
- + include lattice data
 - Nicely follows model prediction

Systematic error – kernel approximation

Upper limit of the energy integral

Systematic error - Approximation $N = 10, \sigma = 0.1$ Create estimate [2211.16830] 1.2

• $N \rightarrow \infty$; frequency component

Systematic error - Approximation Application for $\bar{X}_{VV}^{\parallel}(\boldsymbol{q}^2)$ for $\boldsymbol{q}=(0,0,1)$

In the $\sigma \rightarrow 0$ limit: 1. Slight shift in central values \succ Due to dependence of $\tilde{c}_j^{(l)}$ on σ

2. Minor increase in errors that nicely converges

Estimating the systematic corrections

Channels:

- 1. AA: infinite-volume limit
- 2. VV: finite-volume corrections expected small; only $\sigma \rightarrow 0$ limit
- + subtr. Ground state from correlator and assume as exact

Summary & Outlook

Summary

- Study into systematic effects in the inclusive analysis of semileptonic decays on the lattice
 - \odot Error from Chebyshev polynomial approximation
 - Obtained a better estimate following the first idea
 - \circ Finite volume corrections
 - > Work out further details; supplement with data
- Publication in work (hopefully this year)

Outlook

- Discretization effects & continuum limit need to be addressed
- Extend towards a full analysis in the bottom sector
- Extend to different observables, e.g. moments
 - Increase pool for comparison to experiment and continuum theory predictions, e.g. OPE
- P-wave form factors from inclusive lattice simulation (Zhi Hu's talk, 08/01 11:30)

Systematic errors - Approximation $q^2 = 0.66 \text{ GeV}^2$ $\omega_0 = 0.9 \omega_{\min}$,

Coefficients for kernel with l = 0

