

Exploring Nuclear Beta Decay Through Lattice Effective Field Theory

Teng Wang 2024.8.2 Collaborate with **Xu Feng** and **Bing-Nan Lu**

Nuclear β-Decay on the Lattice: Opportunities and Challenges

Nuclear β**-decay is related to various fundamental problems in physics.**

Lattice QCD has made impressive progresses on the β**-decay of few-body nuclei.**

- M. J. Savage et al, Phys. Rev. Lett. 119, 062002 (2017)
- A. Parreño et al, Phys. Rev. D 103, 074511 (2021)

What about heavier nuclei?

From QCD to Chiral Effective Field Theory

Chiral Effective field theory(EFT) provides a shortcut to the problem.

- Low energy effective field theory of QCD, works for $\mathrm{Q}{<}\!\!<\!\!\mathrm{\Lambda}_{\chi}{\approx}1{\rm GeV}$ \bullet
- Nucleons and pions as DOFs. \bullet
- Spontaneously broken chiral symmetry $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ \bullet
- Order by order calculation through power counting. \bullet
- **Chiral EFT can provide the interaction of a nucleon with another nucleon inside the nucleus and with external fields.**

Chiral EFT can well describe nuclear β-decay.

O How to solve the nuclear many-body problem?

Lattice effective field theory(Lattice EFT) is a many body method to study nucleus on the lattice.

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009)

Lattice EFT + Lattice Method

Main features of Lattice EFT. \star

Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

- Discretize space-time into an Lt×L×L×L lattice.
- **O** Nucleons are point-like particles on the site.
- **O** Discretize the nuclear force, including the strong and Coulomb force on the lattice.
- **O** lattice spacing $a \sim 1$ fm and lattice size L ~ 10 fm.

An Analogy to Lattice QCD

Calculations in Lattice EFT are quite similar to Lattice QCD.

O States are evolved via Euclidean time projection.

$$
|\Phi_g\rangle = \lim_{T \to \infty} e^{-HT} |\Phi_i\rangle
$$

O The NN interaction is decoupled into fermion-boson interaction via the auxiliary field transformation.

$$
\boxed{\exp\left[-\frac{C}{2}\left(N^{\dagger}N\right)^{2}\right]=\sqrt{\frac{1}{2\pi}}\,\int ds\exp\left[-\frac{s^{2}}{2}+\sqrt{C}\,\,s\left(N^{\dagger}N\right)\right]}
$$

O The multi-dimensional integral over the auxiliary field is evaluated through Monte Carlo.

$$
\langle \Phi | e^{-HT} | \Phi \rangle = \int \mathcal{D}s \ e^{-\frac{1}{2}s^2} Z[s]
$$

Chiral Nuclear Force

9 LECs to fit, 10 data points for each channel

We use NNLO chiral nuclear force.

★ The 2N LECs are fitted to PWA93 n-p scattering phase shifts

experiment data: https://nn-online.org Fitting Method: B. N. Lu et al, Phys. Lett. B 760(2016) **We focus on allowed nuclear** β**-decay.**

There are 2 types of matrix elements, Fermi and Gamow-Teller type, with the later more interesting.

Fermi $\langle \Psi_f || J_V^0 || \Psi_i \rangle$ GT $\langle \Psi_f || J_A^{\iota} || \Psi_i \rangle$ sensitive to NS constranied by CVC

We use nuclear axial currents up to N3LO consistently derived from chiral EFT

H. Krebs et al, Annals of Physics 378, 2017 A. Baroni et al, Phys. Rev. C, 93 015501, 2016

Determine 3N LECs: 3H binding energy and 3H β-decay

 \star There are two unknown LECs, c_p and c_E , in **the 3N force, the former also appears in the N3LO contact axial current .**

★ ³H is an ideal system to help determine the LECs.

$$
E(^{3}\text{H}) = -8.482 \text{MeV}
$$
\n
$$
GT(^{3}\text{H} \rightarrow^{3}\text{He}) = 0.9511(13)
$$
\n
$$
c_{D} = 1.01(12)
$$
\n
$$
c_{E} = 0.81(1)
$$

★ Contributions to the Gamow-Teller matrix element (GTME) from currents at different orders.

Predicting 6He β-decay: Trial States' Preparation

We validate our method through calculating the GTME of 6He→**6Li** β**-decay process.**

We find the convergence rate to ⁶He ground depends strongly on the choice of the trial state. ★

Predicting 6He β-decay: Overcoming Sign Problem

Among various competing uncertainties, statistical errors induced by the sign problem is the dominant.

complex

- **o** Model dependence
- \bullet Finite volume effect \cdots

Wigner SU4 symmetry can help reduce sign problem

Making use of the SU4 symmetry, we ease the sign problem using perturbative method

$$
H = H_{\text{LO}} + \Delta V
$$

\n
$$
G\text{T} = G\text{T}^{(0)} + G\text{T}^{(1)} + \mathcal{O}(\Delta V^2)
$$

\n
$$
H_{\text{LO}} = K + \frac{C_2}{2!} \sum_n : \tilde{\rho}^2(n) : + \frac{C_3}{3!} \sum_n : \tilde{\rho}^3(n) : + \frac{C_1}{2!} \sum_{I,n} : \tilde{\rho}_I^2(n) : + V_{\text{OPE}}^{\Lambda'_\pi}
$$

\n
$$
H_{\text{LO}} = K + \frac{C_2}{2!} \sum_n : \tilde{\rho}^2(n) : + \frac{C_1}{3!} \sum_{I,n} : \tilde{\rho}_I^2(n) : + V_{\text{OPE}}^{\Lambda'_\pi}
$$

\n
$$
H_{\text{LO}} = K + \frac{C_2}{2!} \sum_n : \tilde{\rho}^2(n) : + \frac{C_1}{2!} \sum_{I,n} : \tilde{\rho}_I^2(n) : + V_{\text{OPE}}^{\Lambda'_\pi}
$$

\n
$$
H_{\text{LO}} = K + \frac{C_2}{2!} \sum_n : \tilde{\rho}^2(n) : + \frac{C_1}{2!} \sum_{I,n} : \tilde{\rho}_I^2(n) : + V_{\text{OPE}}^{\Lambda'_\pi}
$$

Predicting 6He β-decay: Result

We calculated nuclear β**-decay through lattice EFT for the first time.**

3N LECs are determined from 3H binding energy and β**-decay.**

6He β**-decay is predicted in good consistency with the experiment.**

Tests for heavier nuclei are required.

A direct application on various EW processes in the nuclei is straightforward.

thank You!