

Exploring Nuclear Beta Decay Through Lattice Effective Field Theory

Teng Wang2024.8.2Collaborate with Xu Feng and Bing-Nan Lu

Nuclear β -Decay on the Lattice: Opportunities and Challenges

\star Nuclear β -decay is related to various fundamental problems in physics.

★ Lattice QCD has made impressive progresses on the β-decay of few-body nuclei.

- M. J. Savage et al, Phys. Rev. Lett. 119, 062002 (2017)
- A. Parreño et al, Phys. Rev. D 103, 074511 (2021)

What about heavier nuclei?

From QCD to Chiral Effective Field Theory

★ Chiral Effective field theory(EFT) provides a shortcut to the problem.

- Low energy effective field theory of QCD, works for $Q << \Lambda_{\gamma} \approx 1 GeV$
- Nucleons and pions as DOFs.
- Spontaneously broken chiral symmetry $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$
- Order by order calculation through power counting.
- ★ Chiral EFT can provide the interaction of a nucleon with another nucleon inside the nucleus and with external fields.

• How to solve the nuclear many-body problem?

★ Lattice effective field theory(Lattice EFT) is a many body method to study nucleus on the lattice.

Lattice EFT = Chiral EFT + Lattice Method

★ Main features of Lattice EFT.

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009)

Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

- Discretize space-time into an Lt×L×L×L lattice.
- Nucleons are point-like particles on the site.
- Discretize the nuclear force, including the strong and Coulomb force on the lattice.
- lattice spacing a~1fm and lattice size L~10fm.

An Analogy to Lattice QCD

★ Calculations in Lattice EFT are quite similar to Lattice QCD.

• States are evolved via Euclidean time projection.

$$|\Phi_g\rangle = \lim_{T \to \infty} e^{-HT} |\Phi_i\rangle$$

• The NN interaction is decoupled into fermion-boson interaction via the auxiliary field transformation.

$$\left[\exp\left[-rac{C}{2} \left(N^{\dagger} N
ight)^2
ight] = \sqrt{rac{1}{2\pi}} \, \int ds \exp\left[-rac{s^2}{2} + \sqrt{C} \, s \left(N^{\dagger} N
ight)
ight]$$

• The multi-dimensional integral over the auxiliary field is evaluated through Monte Carlo.

 $\langle \Phi | e^{-HT} | \Phi \rangle = \int \mathcal{D}s \ e^{-\frac{1}{2}s^2} Z[s]$

Chiral Nuclear Force

9 LECs to fit, 10 data points for each channel

\star We use NNLO chiral nuclear force.

★ The 2N LECs are fitted to PWA93 n-p scattering phase shifts

experiment data: https://nn-online.org Fitting Method: B. N. Lu et al, Phys. Lett. B 760(2016) **★** We focus on allowed nuclear β -decay.

★ There are 2 types of matrix elements, Fermi and Gamow-Teller type, with the later more interesting.

Fermi $\langle \Psi_f || J_V^0 || \Psi_i \rangle$ constranied by CVCGT $\langle \Psi_f || J_A^i || \Psi_i \rangle$ sensitive to NS

★ We use nuclear axial currents up to N3LO consistently derived from chiral EFT

A. Baroni et al, Phys. Rev. C, 93 015501, 2016H. Krebs et al, Annals of Physics 378, 2017

Determine 3N LECs: ³H binding energy and ³H β-decay

★ There are two unknown LECs, c_D and c_E, in the 3N force, the former also appears in the N3LO contact axial current.

 \star ³H is an ideal system to help determine the LECs.

$$E(^{3}H) = -8.482MeV$$

$$GT(^{3}H \rightarrow ^{3}He) = 0.9511(13)$$

★ Contributions to the Gamow-Teller matrix element (GTME) from currents at different orders.

Predicting ⁶He β-decay: Trial States' Preparation

★ We validate our method through calculating the GTME of ⁶He \rightarrow ⁶Li β -decay process.

* We find the convergence rate to ⁶He ground depends strongly on the choice of the trial state.

Predicting 6He β-decay: Overcoming Sign Problem

* Among various competing uncertainties, statistical errors induced by the sign problem is the dominant.

- Model dependence
- Finite volume effect…

★ Wigner SU4 symmetry can help reduce sign problem

★ Making use of the SU4 symmetry, we ease the sign problem using perturbative method

$$H = H_{\rm LO} + \Delta V$$

$$GT = GT^{(0)} + GT^{(1)} + \mathcal{O}(\Delta V^2)$$

B. N. Lu et al, Phys. Rev. Lett. 128, 242501 (2022)

$$H_{\rm LO} = K + \frac{C_2}{2!} \sum_{n} : \tilde{\rho}^2(n) : + \frac{C_3}{3!} \sum_{n} : \tilde{\rho}^3(n) : + \frac{C_I}{2!} \sum_{I,n} : \tilde{\rho}_I^2(n) : + V_{\rm OPE}^{\Lambda'_{\pi}}$$

SU4 symmetric
SU4 symmetric
SU4 symmetric
SU4 breaking

Predicting 6He β-decay: Result

★ We calculated nuclear β -decay through lattice EFT for the first time.

★ 3N LECs are determined from ³H binding energy and β -decay.

★ ⁶He β-decay is predicted in good consistency with the experiment.

★ Tests for heavier nuclei are required.

★ A direct application on various EW processes in the nuclei is straightforward.

thank You!