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Studies of gluon PDFs has been relatively limited compared to quark PDFs, however:
• Gluonic contributions make a significant impact on the proton’s spin [C. Alexandrou et al., 

Phys. Rev. D 101, 094513 (2020)]. 

• Phenomenological data suggest that gluon PDFs dominate over quark PDFs in the 
small-x region [S. Alekhin, J. Blümlein, S. Moch, Phys. Rev. D 89, 054028 (2014)]. 

• Global analysis finds that accurate calculations of gluon-dependent quantities are 
essential for the cross-section of Higgs boson production, heavy quarkonium and jet 
production [J. Butterworth et al., J. Phys. G 43, 023001 (2016)].
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Studies of gluon PDFs has been relatively limited compared to quark PDFs, however:
• Gluonic contributions make a significant impact on the proton’s spin [C. Alexandrou et al., 

Phys. Rev. D 101, 094513 (2020)]. 

• Phenomenological data suggest that gluon PDFs dominate over quark PDFs in the 
small-x region [S. Alekhin, J. Blümlein, S. Moch, Phys. Rev. D 89, 054028 (2014)]. 

• Global analysis finds that accurate calculations of gluon-dependent quantities are 
essential for the cross-section of Higgs boson production, heavy quarkonium and jet 
production [J. Butterworth et al., J. Phys. G 43, 023001 (2016)].

One approach for the calculation of the 𝑥𝑥-dependence of PDFs using lattice QCD is the 
quasi-distribution method [X. Ji, Phys. Rev. Lett. 110, 262002 (2013), X. Ji, Sci. China Phys. Mech. Astron. 
57, 1407 (2014)]; employs the large momentum effective theory (LaMET). 
• Quasi-PDFs are defined as matrix elements of momentum-boosted hadrons coupled to 

gauge-invariant nonlocal operators, which includes a finite length Wilson line. 

An important aspect of calculating quasi-PDFs is their renormalization.  
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The nonlocal gluon operators under study are defined in the fundamental 
representation as:

• 𝐹𝐹𝜇𝜇𝜇𝜇 is the gluon field strength tensor 

• 𝑊𝑊( 𝑥𝑥, 𝑥𝑥 + 𝑧𝑧𝜏̂𝜏) is the straight Wilson line with length z. Its expression is given by the 
path-ordered (𝒫𝒫) exponential of the gauge field 𝐴𝐴𝜇𝜇 as follows:
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The nonlocal gluon operators under study are defined in the fundamental 
representation as:

• 𝐹𝐹𝜇𝜇𝜇𝜇 is the gluon field strength tensor 

• 𝑊𝑊( 𝑥𝑥, 𝑥𝑥 + 𝑧𝑧𝜏̂𝜏) is the straight Wilson line with length z. Its expression is given by the 
path-ordered (𝒫𝒫) exponential of the gauge field 𝐴𝐴𝜇𝜇 as follows:

Due to the antisymmetry of 𝐹𝐹𝜇𝜇𝜇𝜇 , by selecting the indices of 𝑂𝑂𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 to be in any direction:

There are 36 nonlocal operators in total
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In general, the nonlocal gluon operators may undergo mixing under renormalization. 
Their mixing pattern can be determined by the symmetries of the theory. 

We define the renormalization mixing matrix 𝑍𝑍:

we use i and j as generic indices, to list operators within a mixing set.
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Conversion factors

Renormalization schemes:
 Modified minimal subtraction ( 𝑀𝑀𝑀𝑀 ) scheme, typically employed in phenomenological 

studies. Cannot be used in nonperturbative studies due to its perturbative nature.
 Modified regularization-invariant (RI′) scheme, applicable in both nonperturbative 

and perturbative studies.

 Nonperturbative renormalization factors are calculated in a suitably defined variant 
of the RI′ scheme.

Then they can be converted to the 𝑀𝑀𝑀𝑀 scheme through conversion factors which can 
only be determined using perturbation theory and are regularization independent:

Convenient to use dimensional regularization (DR) instead of lattice regularization (LR).
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We consider a nonabelian gauge theory of SU(N𝑐𝑐) group and N𝑓𝑓 multiplets of fermions.

Full action:

Terms :
• Gluons: Wilson plaquette gauge action. 
• Fermions: clover-improved Wilson action (𝑐𝑐𝑆𝑆𝑆𝑆 term). 

𝐹𝐹𝜇𝜇𝜇𝜇 is determined by the standard clover discretization.

Standard lattice discretization of the Wilson line, using gluon links 𝑈𝑈𝜏𝜏 (𝑥𝑥):

where 𝑈𝑈−𝜏𝜏 𝑥𝑥 ≡ 𝑈𝑈𝜏𝜏
† (𝑥𝑥 − 𝑎𝑎𝜏̂𝜏) and upper (lower) signs correspond to 𝑛𝑛 >  0 (𝑛𝑛 <  0).

Lattice action
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Symmetry properties

Possible mixing with similar operators:
It can be shown that:

 No mixing with non-gauge invariant operators.

 No mixing with operators involving alternative paths for the Wilson line joining gluon 

field-strength tensor.

 No mixing with nonlocal fermion operators.

=> All mixing operators will necessarily be of the same form as the original operator, 
possibly with different values for the Lorentz indices 𝜇𝜇, 𝜈𝜈,𝜌𝜌,𝜎𝜎.
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Symmetry properties

Possible mixing with similar operators:
It can be shown that:

 No mixing with non-gauge invariant operators.

 No mixing with operators involving alternative paths for the Wilson line joining gluon 

field-strength tensor.

 No mixing with nonlocal fermion operators.

=> All mixing operators will necessarily be of the same form as the original operator, 
possibly with different values for the Lorentz indices 𝜇𝜇, 𝜈𝜈,𝜌𝜌,𝜎𝜎.
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Symmetry properties

𝐶𝐶,𝑃𝑃,𝑇𝑇 transformations:

 Under charge conjugation the operators remain invariant. 

 There are 4 "parity" transformations (reflections 𝑃𝑃1,𝑃𝑃2, 𝑃𝑃3 , 𝑃𝑃4 about each of the 4 
axes); one these alters the sign of z in the operator.

Taking advantage of the translation invariance of the Lagrangian and the cyclic 
permutations on the trace of the operators , we perform a change of basis:

These operators are eigenstates of parity transformations (performed with respect to 
the midpoint of the operators) with eigenvalues of +1 (even, E) or −1 (odd, O). 
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Symmetry properties

Rotational octahedral point group:

Symmetry group that describes the discrete 
rotational symmetries of an octahedron or a cube. 
[since the Wilson line is chosen to lie along the z 
direction]
Consists of 24 elements, corresponding to rotations 
by various angles with respect to different axes. 
It possesses five irreducible representations.
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Symmetry properties

Rotational octahedral point group:

Symmetry group that describes the discrete 
rotational symmetries of an octahedron or a cube. 
[since the Wilson line is chosen to lie along the z 
direction]
Consists of 24 elements, corresponding to rotations 
by various angles with respect to different axes. 
It possesses five irreducible representations.

By exploring whether the operators support the 
same irreducible representations and combining 
our parity transformations findings, we arrange the 
36 operators into 16 groups, as shown in the 
Table.
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Symmetry properties

Key points:
 Operators in groups {1, 2}, {3, 4}, {5, 6}, {7, 8} 

have the potential to mix under renormalization. 
They share the same behavior under parity 
transformations and under the octahedral group.
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Symmetry properties

Key points:
 Operators in groups {1, 2}, {3, 4}, {5, 6}, {7, 8} 

have the potential to mix under renormalization. 
They share the same behavior under parity 
transformations and under the octahedral group.

 Operators in groups 9-16 cannot possibly mix; 
they multiplicatively renormalize. 
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Symmetry properties

Key points:
 Operators in groups {1, 2}, {3, 4}, {5, 6}, {7, 8} 

have the potential to mix under renormalization. 
They share the same behavior under parity 
transformations and under the octahedral group.

 Operators in groups 9-16 cannot possibly mix; 
they multiplicatively renormalize. 

The above findings, are valid beyond 
perturbation theory. [based on symmetry 
properties alone].
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Perturbative calculation of Green’s functions 

To study the renormalization of the gluon nonlocal operators:

We calculate the following one-particle-irreducible (1-PI) two-point bare amputated 
Green’s functions using dimensional regularization (DR) and lattice regularization (LR):

Calculations are more complicated than local operators due to the presence of both the 
external momentum (q) and the length of the Wilson line (z) in the integrands. 
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One loop calculations

Fig.4: One-loop Feynman diagrams of the Green’s functions of the gluon nonlocal operators. 
[Solid lines represent gluons. The operator insertion is denoted by a blue solid box.]
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One loop calculations in DR

The renormalization matrix of the operators turns out to be diagonal, both in the 
original basis (𝑂𝑂𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇) and in the basis of symmetries table (16 groups).

Using the 𝑀𝑀𝑀𝑀 renormalization condition and the 1-loop results, we find:

      where

[Groups containing multiplets share the same renormalization factor for each 
component within the multiplet]
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One loop calculations in DR

The renormalization matrix of the operators turns out to be diagonal, both in the 
original basis (𝑂𝑂𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇) and in the basis of symmetries table (16 groups).

Using the 𝑀𝑀𝑀𝑀 renormalization condition and the 1-loop results, we find:

      where

[Groups containing multiplets share the same renormalization factor for each 
component within the multiplet]

This result:
• is independent of gauge parameter (𝛽𝛽) . It is expected from gauge invariance in 𝑀𝑀𝑀𝑀 .
• is independent of the length of the Wilson line (𝑧𝑧). 
• indicates no operator mixing of equal or lower dimension.
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RI′ renormalization prescription

Significant flexibility in defining renormalization conditions in a RI′ scheme, particularly 
in cases of operator mixing.

A practical choice for a RI′-like scheme suitable for nonperturbative studies is to 
consider:
• four 2×2 mixing matrices (for each of the four 2-element mixing groups).
• eight 1×1 matrices (for operators that are multiplicatively renormalizable).

We need to impose several conditions to identify the elements of these matrices.

In our proposed conditions:
 We select certain values for the Lorentz indices 𝛼𝛼,𝛽𝛽 of the external gluons.
 We set specific components of the RI′ renormalization scale (�𝑞𝑞) to zero. 

With this choice, we aim to create a solvable system of conditions and achieve simpler 
expressions. Other options can be tested by using our results on the full Green's 
functions.
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Conversion factors

Using the renormalization conditions of the RI′ scheme and the 𝑀𝑀𝑀𝑀 -renormalized Green’s 
functions we derive the conversion factors of the operators.
 They are complex expressions including integrals of modified Bessel functions of 

the second kind, 𝐾𝐾𝑛𝑛, over a Feynman parameter and/or over variables running 
along the Wilson line. 

Insights by plotting the conversion factors for the parameters used in lattice simulations. 

For the 𝑁𝑁𝑓𝑓 = 2 + 1 + 1 ensemble of twisted-mass clover-improved fermions and Iwasaki-
improved gluons (cA211.30.32) [C. Alexandrou et al. , Phys. Rev. D 98, 054518 (2018)]:

• 𝑀𝑀𝑀𝑀 scale is fixed at 𝜇̅𝜇 = 2 𝐺𝐺𝐺𝐺𝐺𝐺 
• lattice volume is 𝐿𝐿3 × 𝑇𝑇 with 𝐿𝐿 = 32 and 𝑇𝑇 = 64 (in lattice units)
• lattice spacing is 𝑎𝑎 = 0.0938 𝑓𝑓𝑓𝑓
• 𝑔𝑔2 = 3.47625
• 𝛽𝛽 = 1 (Landau gauge)

RI′ scale is defined as 𝑎𝑎�𝑞𝑞 = (2𝜋𝜋
𝐿𝐿

 𝑛𝑛1, 2𝜋𝜋
𝐿𝐿

 𝑛𝑛2, 2𝜋𝜋
𝐿𝐿

 𝑛𝑛3, 2𝜋𝜋
𝐿𝐿

 ( 𝑛𝑛4+ 1
2
 )), where 𝑛𝑛𝑖𝑖  are integers.

Motivation

Theoretical setup

 Results

Conclusion



24

Conversion factors

The plots:
 Show the real part of the conversion factors 

as a function of 𝑧𝑧/𝑎𝑎 [imaginary part is 
strictly zero or negligible (10−5)]

 Highlight data points at integer values of 
𝑧𝑧/𝑎𝑎 ranging from 1 to 𝐿𝐿/2 = 16, while 
dashed lines connecting these points display 
the conversion factors for arbitrary 
noninteger values of 𝑧𝑧/𝑎𝑎 (value at 𝑧𝑧/𝑎𝑎 = 0 
has been excluded) 

 Do not show negative values of 𝑧𝑧/𝑎𝑎 as the 
conversion factors are symmetric with 
respect to 𝑧𝑧 = 0.

 Depending on the choice of �𝑞𝑞 the numerical 
values of the conversion factors can be 
excessively large (must tune �𝑞𝑞 accordingly). 

Fig.5: Conversion factor of ‘plus-type’ 
operators as a function of 𝑧𝑧/𝑎𝑎
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Conversion factors

As an example, for the ‘plus-type’ operators 
(mixing pairs {1, 2}, {3, 4}, {7, 8}, and 
operators 9,11, and 15 ):
 We set 𝑛𝑛1 = 𝑛𝑛2 = 3, 𝑛𝑛3 = 0, and 𝑛𝑛4 = −1/2. 

Fig.5: Conversion factor of ‘plus-type’ 
operators as a function of 𝑧𝑧/𝑎𝑎
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Conversion factors

As an example, for the ‘plus-type’ operators 
(mixing pairs {1, 2}, {3, 4}, {7, 8}, and 
operators 9,11, and 15 ):
 We set 𝑛𝑛1 = 𝑛𝑛2 = 3, 𝑛𝑛3 = 0, and 𝑛𝑛4 = −1/2. 

Conversion matrix elements for pair {7, 8}:
• Diagonal elements (figure above)
• Nondiagonal elements (figure below)
mixing pairs, {1, 2} and {3, 4}, have similar 

qualitative behavior.

Fig.5: Conversion factor of ‘plus-type’ 
operators as a function of 𝑧𝑧/𝑎𝑎
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Conversion factors

As an example, for the ‘plus-type’ operators 
(mixing pairs {1, 2}, {3, 4}, {7, 8}, and 
operators 9,11, and 15 ):
 We set 𝑛𝑛1 = 𝑛𝑛2 = 3, 𝑛𝑛3 = 0, and 𝑛𝑛4 = −1/2. 

Conversion matrix elements for pair {7, 8}:
• Diagonal elements (figure above)
• Nondiagonal elements (figure below)
mixing pairs, {1, 2} and {3, 4}, have similar 

qualitative behavior.

Conversion matrix element for operator 15:
• single element as it is multiplicatively 

renormalized
non mixing operators, 9 and 11, have 

similar graphical representation.
Fig.5: Conversion factor of ‘plus-type’ 
operators as a function of 𝑧𝑧/𝑎𝑎

Motivation

Theoretical setup

 Results

Conclusion



28

Conversion factors

For the ‘minus-type’ operators (mixing pair 
{5,6}, and operators 10, 12, 14, and 16 ):
 We set 𝑛𝑛1=0, 𝑛𝑛2= 𝑛𝑛3 = 3, and 𝑛𝑛4 = 5 for 

mixing pair {5,6}
 and 𝑛𝑛1= 𝑛𝑛2= 0, 𝑛𝑛3 = 3, and 𝑛𝑛4 = 5 for 

operators 10,12,14, and 16
[thus tree-level Green’s functions will be 
invertible for all integer values]

Fig.6: Conversion factor of ‘minus-type’ 
operators as a function of 𝑧𝑧/𝑎𝑎
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Conversion factors

For the ‘minus-type’ operators (mixing pair 
{5,6}, and operators 10, 12, 14, and 16 ):
 We set 𝑛𝑛1=0, 𝑛𝑛2= 𝑛𝑛3 = 3, and 𝑛𝑛4 = 5 for 

mixing pair {5,6}
 and 𝑛𝑛1= 𝑛𝑛2= 0, 𝑛𝑛3 = 3, and 𝑛𝑛4 = 5 for 

operators 10,12,14, and 16
[thus tree-level Green’s functions will be 
invertible for all integer values]

Conversion matrix elements for pair {5, 6}:
• Diagonal elements (figure above)
• Nondiagonal elements (figure below)

Fig.6: Conversion factor of ‘minus-type’ 
operators as a function of 𝑧𝑧/𝑎𝑎
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Conversion factors

For the ‘minus-type’ operators (mixing pair 
{5,6}, and operators 10, 12, 14, and 16 ):
 We set 𝑛𝑛1=0, 𝑛𝑛2= 𝑛𝑛3 = 3, and 𝑛𝑛4 = 5 for 

mixing pair {5,6}
 and 𝑛𝑛1= 𝑛𝑛2= 0, 𝑛𝑛3 = 3, and 𝑛𝑛4 = 5 for 

operators 10,12,14, and 16
[thus tree-level Green’s functions will be 
invertible for all integer values]

Conversion matrix elements for pair {5, 6}:
• Diagonal elements (figure above)
• Nondiagonal elements (figure below)

Conversion matrix element for operator 16:
• single element as it is multiplicatively 

renormalized
non mixing operators, 10,12, and 14, have 

similar graphical representation.
Fig.6: Conversion factor of ‘minus-type’ 
operators as a function of 𝑧𝑧/𝑎𝑎
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One loop calculations in LR

We find the renormalization factors in LR [ 𝑖𝑖, 𝑗𝑗 ∈ {1, … , 16} ]:

where 𝑒𝑒1 = −1.05739, 𝑒𝑒2 = 0.79694, 𝑒𝑒3 = −4.71269, 𝑒𝑒4 = −17.81504, 𝑒𝑒5 = −19.95484, and 
𝑒𝑒6 = −8.37940. 
• The presence of 𝑐𝑐𝑆𝑆𝑆𝑆 is inherited from lattice gluon field renormalization factor. 
• The expression is gauge independent ( numerically confirmed up to 𝒪𝒪(10−5) ). 
• Coefficient 𝑒𝑒5 has the same value as in the quark nonlocal operators of an arbitrary 

Wilson line’s shape (linear divergence arises only from Wilson-line self-energy). 
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One loop calculations in LR

We find the renormalization factors in LR [ 𝑖𝑖, 𝑗𝑗 ∈ {1, … , 16} ]:

where 𝑒𝑒1 = −1.05739, 𝑒𝑒2 = 0.79694, 𝑒𝑒3 = −4.71269, 𝑒𝑒4 = −17.81504, 𝑒𝑒5 = −19.95484, and 
𝑒𝑒6 = −8.37940. 
• The presence of 𝑐𝑐𝑆𝑆𝑆𝑆 is inherited from lattice gluon field renormalization factor. 
• The expression is gauge independent ( numerically confirmed up to 𝒪𝒪(10−5) ). 
• Coefficient 𝑒𝑒5 has the same value as in the quark nonlocal operators of an arbitrary 

Wilson line’s shape (linear divergence arises only from Wilson-line self-energy). 

The renormalization matrix turns out to be diagonal, both in the original basis (𝑂𝑂𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇) 
and in the basis of symmetries table (16 groups), as observed in the case of DR.

=>in lattice theory at the 1-loop level, the nonlocal gluon operators under investigation 
are multiplicatively renormalized.
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One loop calculations in LR

We find the renormalization factors in LR [ 𝑖𝑖, 𝑗𝑗 ∈ {1, … , 16} ]:

where 𝑒𝑒1 = −1.05739, 𝑒𝑒2 = 0.79694, 𝑒𝑒3 = −4.71269, 𝑒𝑒4 = −17.81504, 𝑒𝑒5 = −19.95484, and 
𝑒𝑒6 = −8.37940. 
• The presence of 𝑐𝑐𝑆𝑆𝑆𝑆 is inherited from lattice gluon field renormalization factor. 
• The expression is gauge independent ( numerically confirmed up to 𝒪𝒪(10−5) ). 
• Coefficient 𝑒𝑒5 has the same value as in the quark nonlocal operators of an arbitrary 

Wilson line’s shape (linear divergence arises only from Wilson-line self-energy). 

The renormalization matrix turns out to be diagonal, both in the original basis (𝑂𝑂𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇) 
and in the basis of symmetries table (16 groups), as observed in the case of DR.

=>in lattice theory at the 1-loop level, the nonlocal gluon operators under investigation 
are multiplicatively renormalized.
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One loop calculations in LR

Even though the one-loop lattice calculation shows a multiplicative renormalization for 
all the gluon nonlocal operators under study:

 We expect that mixing among pairs of operators, as dictated by the symmetries of 
QCD, will be revealed at higher orders. 

 Provides a valuable input to the nonperturbative studies regarding the size of mixing 
contributions expected to arise in lattice simulations.

 Although a multiplicatively renormalizable operator is a better candidate to explore 
the hadron matrix elements of gluon PDFs, in practice, other operators, which can mix 
only at higher orders of perturbation theory, can be possible alternatives.
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We have studied the renormalization of the gluon nonlocal operators.
• By analyzing the symmetry properties of these operators, we have identified their 

mixing pattern under renormalization; some undergo mixing into pairs ({1, 2}, {3, 4}, 
{5, 6}, {7, 8}), while others are multiplicatively renormalizable (9-16). 

• We have computed the two-point bare Green’s functions of gluon nonlocal operators 
using both DR and LR.

• We have evaluated the renormalization factors in the 𝑀𝑀𝑀𝑀 scheme at one-loop. They 
are found to be diagonal, both in the continuum and on the lattice.

• In lattice theory, at the 1-loop level, the nonlocal gluon operators undergo 
multiplicative renormalization. Mixing is expected to occur at higher orders of 
perturbation theory.

• We determined the conversion factors of these operators between the RI′ and 𝑀𝑀𝑀𝑀 
renormalization schemes. The RI′ scheme was defined to be compatible with the 
mixing pattern of the operators and be practical for nonperturbative studies. 

• The outcomes of this study are essential for exploring potential paths for 
investigations of gluon PDFs through lattice QCD.

Summary and Discussion
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Symmetry properties

Possible mixing with similar operators:

 No mixing with operators involving alternative paths for the Wilson line joining gluon 
field-strength tensor.
Wilson lines renormalize multiplicatively

 No mixing with nonlocal fermion operators:

where Ψ generally stands for a fermion field, and Γ is a Dirac γ-matrix (or product 
thereof). 
Ψ transforms under the fundamental, rather than the adjoint, representation of 

the global gauge group.

Motivation

Theoretical setup

 Results

Conclusion
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Symmetry properties

Possible mixing with similar operators:

 No mixing with non-gauge invariant operators, in particular: 
• BRST variations of other operators [Class A]
• operators which vanish by the equations of motion [Class B]
• finite mixing with any other operator having the same symmetry properties 

[Class C]. 
substitution of the field strength tensor 𝐹𝐹𝜇𝜇𝜇𝜇 , on either side of the Wilson line, by any 

combination of elementary fields, would violate one or more of the symmetries. 
[e.g., local BRST symmetry.]

Motivation

Theoretical setup

 Results
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Perturbative calculation of Green’s functions 

We calculate the following one-particle-irreducible (1-PI) two-point bare amputated 
Green’s functions using dimensional regularization (DR) and lattice regularization (LR):

More complicated calculations than local operators due to the presence of both the 
external momentum (q) and the length of the Wilson line (z) in the integrands. 

The amputated tree-level Green’s functions for both DR and LR:

• the expression is antisymmetric in {μ, ν} and {ρ, σ}
• the expression is symmetric under (μ, ν)  (ρ, σ) and under (α, β, q)  (β, α,−q).

Motivation

Theoretical setup

 Results

Conclusion
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RI′ renormalization prescription

Renormalization 
conditions for       
mixing pairs:

• 𝑞𝑞𝜈𝜈 is the momentum 
of the external gluon 
fields

• �𝑞𝑞𝜈𝜈 is the RI′ 
renormalization scale

• The trace is 
performed across 
color space. 

Motivation

Theoretical setup

 Results

Conclusion
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RI′ renormalization prescription

Renormalization 
conditions for 
multiplicative 
renormalized operators:

• 𝑞𝑞𝜈𝜈 is the momentum 
of the external gluon 
fields

• �𝑞𝑞𝜈𝜈 is the RI′ 
renormalization scale

• The trace is 
performed across 
color space. 

For ‘minus-type’ operators (mixing pair {5, 6} and operators 10,12,14, and 16 with 
multiplicative renormalization) we cannot select �𝑞𝑞3=0 (nor �𝑞𝑞3=𝜋𝜋 𝑧𝑧 𝑛𝑛, where 𝑛𝑛 is an 
integer) because sin(�𝑞𝑞3 𝑧𝑧) will vanish, thus making their expression noninvertible. 

Motivation

Theoretical setup

 Results
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Conversion factors

Note for  ‘minus-type’ operators:

Divergent behavior for noninteger values of 
𝑧𝑧/𝑎𝑎
due to the unavoidable factor of sin(�𝑞𝑞3 𝑧𝑧) in 

their tree-level expressions
But 𝑧𝑧/𝑎𝑎 is necessarily an integer in the lattice 
definition of the operators, making these 
divergences inconsequential.

Fig.6: Conversion factor of ‘minus-type’ 
operators as a function of 𝑧𝑧/𝑎𝑎
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