Gauge dependence of $c\bar{c}$ potential from **Nambu-Bethe-Salpeter wave function in Lattice QCD**

Tianchen Zhang, Noriyoshi Ishii RCNP, Osaka University, Japan

Lattice 2024, Liverpool, 2024/08/02

Previous works on extracting qq¯ *potential*

Previous works on extracting $q\bar{q}$ *potential*

✦ **Phenomenology**:

 $$

 $\sqrt{}$ Heavy quarks with finite mass (deviation may appear at the long distance)

Previous works on extracting $q\bar{q}$ *potential*

✦ **Phenomenology**:

 $$

 $\sqrt{}$ Heavy quarks with finite mass (deviation may appear at the long distance)

✦ *Wilson loop approach* by LQCD

✓ Quarks with infinite mass

[Cf.] Gattringer, C., & Lang, C. (2009). Quantum chromodynamics on the lattice: an introductory presentation (Vol. 788).

Previous works on extracting $q\bar{q}$ *potential*

✦ **Phenomenology**:

 $$

✓ Heavy quarks with finite mass (deviation may appear at the long distance)

Wilson loop approach by LQCD

✓ Quarks with infinite mass

- ✦ Corrections by **potential** *non-relativistic QCD (pNRQCD)* ($1/m_q^{}$ expansion in the Wilson loop formalism) [Cf.] Brambilla et al., Rev. Mod. Phys. 77, 1423
	- $\sqrt{}$ Quarks with finite but large mass

[Cf.] Gattringer, C., & Lang, C. (2009). Quantum chromodynamics on the lattice: an introductory presentation (Vol. 788).

Previous works on extracting qq¯ *potential*

✦ **Phenomenology**:

 $$

✓ Heavy quarks with finite mass (deviation may appear at the long distance)

Wilson loop approach by LQCD

✓ Quarks with infinite mass

[[]Cf.] Gattringer, C., & Lang, C. (2009). Quantum chromodynamics on the lattice: an introductory presentation (Vol. 788).

✦ Corrections by **potential** *non-relativistic QCD (pNRQCD)* ($1/m_q^{}$ expansion in the Wilson loop formalism) ✓ Quarks with finite but large mass ✦ *NBS amplitude approach* [Cf.] Brambilla et al., Rev. Mod. Phys. 77, 1423 [Cf.] Kawanai, Sasaki, Phys. Rev. Lett. 107(9):091601, 2011

2

 $\sqrt{}$ Quarks with finite mass (\sim charm quarks)

More on NBS amplitude approach

- Originated from HAL QCD method, modified for the $q\bar{q}$ system
- $\sqrt{}$ Quark mass $\rightarrow \infty$: Potential smoothly approaches the Wilson loop result
- √ Quark mass \sim charm quark mass m_c : Cornell type potential reproduced

[Cf.] Kawanai, Sasaki, Phys. Rev. Lett. 107(9):091601, 2011

✦ In an unpublished work by H. Iida and Y. Ikeda: *Long-distance behavior* of the $q\bar{q}$ potential is **destroyed** in the Landau gauge

◆ In an unpublished work by H. Iida and Y. Ikeda: *Long-distance behavior* of the $q\bar{q}$ potential is **destroyed** in the Landau gauge

- Personal interest on Hess's work on *quark* and *diquark* masses [Cf.] Hess et al., Phys. Rev. D 58, 111502
	- $\sqrt{}$ They extracted them by directly fitting the 2-point correlator in the Landau gauge

◆ In an unpublished work by H. Iida and Y. Ikeda: *Long-distance behavior* of the $q\bar{q}$ potential is **destroyed** in the Landau gauge

- Personal interest on Hess's work on *quark* and *diquark* masses [Cf.] Hess et al., Phys. Rev. D 58, 111502
	- $\sqrt{}$ They extracted them by directly fitting the 2-point correlator in the Landau gauge

Renormalizability of the Coulomb gauge is controversial

✦ **4-point correlator** and **NBS wave function**

✦ **4-point correlator** and **NBS wave function**

$$
C(\mathbf{x} - \mathbf{y}, t) = \langle 0 | T\{\bar{c}(\mathbf{x}, t)\Gamma c(\mathbf{y}, t) \cdot \mathcal{J}(t = 0) \} | 0 \rangle
$$

=
$$
\sum_{n=0}^{\infty} a_n \phi_n(\mathbf{x} - \mathbf{y}) e^{-E_n t} \sim a_0 \phi_0(\mathbf{x} - \mathbf{y}) e^{-E_0 t}
$$

✦ **4-point correlator** and **NBS wave function**

$$
C(\mathbf{x} - \mathbf{y}, t) = \langle 0 | T\{\bar{c}(\mathbf{x}, t)\Gamma c(\mathbf{y}, t) \cdot \mathcal{J}(t = 0) \} | 0 \rangle
$$

=
$$
\sum_{n=0}^{\infty} a_n \phi_n(\mathbf{x} - \mathbf{y}) e^{-E_n t} \sim a_0 \phi_0(\mathbf{x} - \mathbf{y}) e^{-E_0 t}
$$

for large t

 $c \rightarrow c$

✦ **4-point correlator** and **NBS wave function**

To eliminate the excited state contamination *Ground state saturation is important!*

 $c \rightarrow c$

✦ **4-point correlator** and **NBS wave function**

$$
C(\mathbf{x} - \mathbf{y}, t) = \langle 0 | T\{\bar{c}(\mathbf{x}, t)\Gamma c(\mathbf{y}, t) \cdot \hat{\mathcal{J}}(t=0) \} | 0 \rangle
$$

=
$$
\sum_{n=0}^{\infty} a_n \phi_n(\mathbf{x} - \mathbf{y}) e^{-E_n t} \sim a_0 \phi_0(\mathbf{x} - \mathbf{y}) e^{-E_0 t}
$$

for large t

wave function is projected to S-wave by $\phi(r) = \frac{1}{48} \sum_{g \in O_h} \phi(g^{-1}(\mathbf{x} - \mathbf{y}))$ " A_1^+ projection"

To eliminate the excited state contamination *Ground state saturation is important!*

 $c \rightarrow c$

 \blacklozenge Schrödinger equation/is demanded to be satisfied as

$$
(M_{\Gamma} - 2m_c)\phi_0(r) = \left[-\frac{\nabla^2}{m_c} + \hat{V}(r)\right]\phi_0(r)
$$

✦ **4-point correlator** and **NBS wave function**

$$
C(\mathbf{x} - \mathbf{y}, t) = \langle 0 | T\{\bar{c}(\mathbf{x}, t)\Gamma c(\mathbf{y}, t) \cdot \hat{\mathcal{J}}(t=0) \} | 0 \rangle
$$

=
$$
\sum_{n=0}^{\infty} a_n \phi_n(\mathbf{x} - \mathbf{y}) e^{-E_n t} \sim a_0 \phi_0(\mathbf{x} - \mathbf{y}) e^{-E_0 t}
$$

for large t

wave function is projected to S-wave by $\phi(r) = \frac{1}{48} \sum_{g \in O_h} \phi(g^{-1}(\mathbf{x} - \mathbf{y}))$ " A_1^+ projection"

To eliminate the excited state contamination *Ground state saturation is important!*

 $c \rightarrow c$

 \blacklozenge Schrödinger equation/is demanded to be satisfied as

$$
(M_{\Gamma} - 2m_c)\phi_0(r) = \left[-\frac{\nabla^2}{m_c} + \hat{V}(r) \right] \phi_0(r)
$$

 \checkmark $\Gamma: \gamma_5 \to \gamma_5$ pseudo-scalar state (PS, $J^P = 0^-$); $\gamma_i \to \gamma_5$ vector state (V, $J^P = 1^-$);...

✦ **4-point correlator** and **NBS wave function**

$$
C(\mathbf{x} - \mathbf{y}, t) = \langle 0 | T\{\bar{c}(\mathbf{x}, t)\Gamma c(\mathbf{y}, t) \cdot \mathcal{J}(t = 0) \} | 0 \rangle
$$

=
$$
\sum_{n=0}^{\infty} a_n \phi_n(\mathbf{x} - \mathbf{y}) e^{-E_n t} \sim a_0 \phi_0(\mathbf{x} - \mathbf{y}) e^{-E_0 t}
$$

for large t

wave function is projected to S-wave by $\phi(r) = \frac{1}{48} \sum_{g \in O_h} \phi(g^{-1}(\mathbf{x} - \mathbf{y}))$ " A_1^+ projection"

To eliminate the excited state contamination *Ground state saturation is important!*

 $c \rightarrow c$

 \blacklozenge Schrödinger equation is demanded to be satisfied as

$$
(M_{\Gamma} - 2m_c)\phi_0(r) = \left[-\frac{\nabla^2}{m_c} + \hat{V}(r)\right]\phi_0(r)
$$

 \checkmark $\Gamma: \gamma_5 \to \gamma_5$ pseudo-scalar state (PS, $J^P = 0^-$); $\gamma_i \to \gamma_5$ vector state (V, $J^P = 1^-$);...

 \mathcal{J} *M*_{Γ} Rest mass of the $c\bar{c}$ meson from channel Γ (from 2-point correlators)

✦ **4-point correlator** and **NBS wave function**

$$
C(\mathbf{x} - \mathbf{y}, t) = \langle 0 | T\{\bar{c}(\mathbf{x}, t)\Gamma c(\mathbf{y}, t) \cdot \hat{\mathcal{J}}(t=0) \} | 0 \rangle
$$

=
$$
\sum_{n=0}^{\infty} a_n \phi_n(\mathbf{x} - \mathbf{y}) e^{-E_n t} \sim a_0 \phi_0(\mathbf{x} - \mathbf{y}) e^{-E_0 t}
$$

for large t

wave function is projected to S-wave by $\phi(r) = \frac{1}{48} \sum_{g \in O_h} \phi(g^{-1}(\mathbf{x} - \mathbf{y}))$ " A_1^+ projection"

To eliminate the excited state contamination *Ground state saturation is important!*

 $c \rightarrow c$

 \blacklozenge Schrödinger equation/is demanded to be satisfied as

$$
(M_{\Gamma} - 2m_c)\phi_0(r) = \left[-\frac{\nabla^2}{m_c} + \hat{V}(r)\right]\phi_0(r)
$$

 \checkmark $\Gamma: \gamma_5 \to \gamma_5$ pseudo-scalar state (PS, $J^P = 0^-$); $\gamma_i \to \gamma_5$ vector state (V, $J^P = 1^-$);...

- \mathcal{J} M_{Γ} : Rest mass of the $c\bar{c}$ meson from channel Γ (from 2-point correlators)
- ✓ *m* : Charm quark mass (determined later by Kawanai-Sasaki condition) *^c*

✦ **4-point correlator** and **NBS wave function**

$$
C(\mathbf{x} - \mathbf{y}, t) = \langle 0 | T\{\bar{c}(\mathbf{x}, t)\Gamma c(\mathbf{y}, t) \cdot \tilde{J}(t=0)\} | 0 \rangle
$$

=
$$
\sum_{n=0}^{\infty} a_n \phi_n(\mathbf{x} - \mathbf{y}) e^{-E_n t} \sim a_0 \phi_0(\mathbf{x} - \mathbf{y}) e^{-E_0 t}
$$
 $\psi_n(\mathbf{x} - \mathbf{y}) \equiv \langle 0 | \bar{c}(\mathbf{x}) \Gamma c(\mathbf{y}) | n \rangle$

wave function is projected to S-wave by $\phi(r) = \frac{1}{48} \sum_{g \in O_h} \phi(g^{-1}(\mathbf{x} - \mathbf{y}))$ " A_1^+ projection"

To eliminate the excited state contamination *Ground state saturation is important!*

 $c \rightarrow c$

 \blacklozenge Schrödinger equation/is demanded to be satisfied as

$$
(M_{\Gamma} - 2m_c)\phi_0(r) = \left[-\frac{\nabla^2}{m_c} + \hat{V}(r)\right]\phi_0(r)
$$

 \checkmark $\Gamma: \gamma_5 \to \text{pseudo-scalar state (PS, } J^P = 0^-); \gamma_i \to \text{vector state } (V, J^P = 1^-); \dots$

- M_{Γ} : Rest mass of the $c\bar{c}$ meson from channel Γ (from 2-point correlators)
- *m_c*: Charm quark mass (determined later by Kawanai-Sasaki condition)

✦ Schrödinger eqs for **PS** and **V:**

$$
(M_{PS} - 2m_c)\phi_{PS}(r) = \left[-\frac{\nabla^2}{m_c} + V_0(r) - \frac{3}{4}V_s(r) \right] \phi_{PS}(r)
$$

$$
(M_V - 2m_c)\phi_V(r) = \left[-\frac{\nabla^2}{m_c} + V_0(r) + \frac{1}{4}V_s(r) \right] \phi_V(r)
$$

✦ Schrödinger eqs for **PS** and **V:**

$$
(M_{PS} - 2m_c)\phi_{PS}(r) = \left[-\frac{\nabla^2}{m_c} + V_0(r) - \frac{3}{4}V_s(r) \right] \phi_{PS}(r)
$$

$$
(M_V - 2m_c)\phi_V(r) = \left[-\frac{\nabla^2}{m_c} + V_0(r) + \frac{1}{4}V_s(r) \right] \phi_V(r)
$$

◆ by inversely solving them, the potentials are obtained as

$$
V_0(r) = \frac{1}{4m_c} \left[3 \frac{\nabla^2 \phi_V(r)}{\phi_V(r)} + \frac{\nabla^2 \phi_{PS}(r)}{\phi_{PS}(r)} \right] + \frac{1}{4} (3M_V + M_{PS}) - 2m_c
$$

$$
V_s(r) = \frac{1}{m_c} \left[\frac{\nabla^2 \phi_V(r)}{\phi_V(r)} - \frac{\nabla^2 \phi_{PS}(r)}{\phi_{PS}(r)} \right] + (M_V - M_{PS})
$$

✓ **Note:**

For $c\bar{c}$ system, m_c cannot be obtained from the 2-point correlator due to confinement. (Different from the conventional HAL QCD method.)

Kawanai-Sasaki Condition

 \blacklozenge To determine the charm quark mass

Kawanai and Sasaki proposed

$$
V_{s}(r) = \frac{1}{m_c} \left[\frac{\nabla^2 \phi_V(r)}{\phi_V(r)} - \frac{\nabla^2 \phi_{PS}(r)}{\phi_{PS}(r)} \right] + (M_V - M_{PS}) \rightarrow 0 \text{ as } r \rightarrow \text{large}
$$

which gives Kawanai-Sasaki condition:

$$
m_c = -\lim_{r \to \infty} F_{\text{KS}}(r)
$$

$$
F_{\text{KS}}(r) \equiv \frac{1}{M_V - M_{PS}} \left[\frac{\nabla^2 \phi_V(r)}{\phi_V(r)} - \frac{\nabla^2 \phi_{PS}(r)}{\phi_{PS}(r)} \right]
$$

Kawanai-Sasaki function

Lattice Setup

◆ Gauge configurations:

- 2 + 1 flavor dynamical LQCD configurations on $32^3 \times 64$ lattice [Cf.] S. Aoki, et al. (PACS-CS Coll.), Phys. Rev. D79, 034503(2009) \blacktriangleright RG improved Iwasaki gauge action ($\beta = 1.90$) \blacktriangleright O(a)-improved Wilson quark action ($\kappa_{ud}^{}=0.1378100$, $C_{\rm SW}^{}=1.715$)
- \blacktriangleright Pion mass: $155.7\;\text{MeV}$ (Almost the physical pion mass)
- Spatial size: $L = 2.902(42)$ fm
- ‣ Lattice cutoff: () *a*−¹ ∼ 2.1753 GeV *a* = 0.0907(13) fm

✦Charm quark is introduced by the quenched approximation by using the relativistic heavy quark action [Cf.] Y. Namekawa, et al. (PACS-CS Coll.), Phys. Rev. D84, 074505(2011)

✦**Coulomb** and **Landau** gauge fixing

- ✦ Wall source and point sink for quark propagators
- ◆ Number of source points: 64

 $C(t) = \langle 0 | T\{ \bar{c}(t) \Gamma c(t) \cdot f(t=0) \} | 0 \rangle \sim A e^{-E_{\Gamma} t}$ (for large *t*) point sink wall source

1. cc¯ *meson masses*

2. Behavior of the 4-point correlators $\mathbf{\mathsf{Results}}$ *n* $a_n \phi_n(\mathbf{x} - \mathbf{y}, t) e^{-E_n t} \sim a_0 \phi_0(\mathbf{x} - \mathbf{y}) e^{-E_0 t}$ (for large *t*)

10

3. Four-point correlators at large t

4. Kawanai-Sasaki function

Lighter m_c for the Landau gauge!

Kawanai-Sasaki Condition:

 $m_c = -\lim_{r \to \infty} F_{\rm KS}(r)$

r→∞

Kawanai-Sasaki Function:

$$
F_{\rm KS}(\mathbf{r}) \equiv \frac{1}{M_V - M_{PS}} \left[\frac{\nabla^2 \phi_V(\mathbf{r})}{\phi_V(\mathbf{r})} - \frac{\nabla^2 \phi_{PS}(\mathbf{r})}{\phi_{PS}(\mathbf{r})} \right]
$$

5. Spin-indep. potential $V_0(r)$

5. Spin-indep. potential $V_0(r)$

5. *Spin-dep. potential* $V_s(r)$

Short-ranged $V_s(r)$ is obtained (smeared δ -function type)

Comments

✦ We attempted to improve Landau gauge results by **time-dependent NBS amplitude method** *originated from time-dep. HAL QCD method*. But we failed. The reason seems to be the huge contributions from the states above open-charm threshold.

Time-dependent HAL QCD method (N.Ishii et al., PLB712,437(2012).)

1. Consider large t region so that contributions from states above open-charm threshold are suppressed in the 4-point correlator:

$$
C(\mathbf{x} - \mathbf{y}, t) = \sum_{n=0}^{\infty} a_n \phi_n(\mathbf{x} - \mathbf{y}) e^{-E_n t}
$$

2. Schrödinger eq. satisfied by $\phi_n(\mathbf{r})$ below these thresholds

$$
(\hat{H}_0 + \hat{V})\phi_n(\mathbf{r}) = (E_n - 2m_c)\phi_n(\mathbf{r})
$$

leads us to

$$
-\frac{d}{dt}C(\mathbf{r},t) = (2m_c + \hat{H}_0 + \hat{V})C(\mathbf{r},t)
$$

which is solved inversely for the potentials.

3. This method allows us to obtain converged potentials from smaller t-region than the original (t-indep.) HAL QCD method.

We plan to use an improved source obtained by the variational method.

Summary

 \blacklozenge We calculated $c\bar{c}$ potentials and charm quark mass by NBS amplitude method with Kawanai-Sasaki prescription in Landau and Coulomb gauges.

Landau gauge

- ✓ Slow convergence to ground state
- ✓ Cornell-type spin-indep. potential whose long distance is destroyed due to slow convergence to groud state
- ✓ Short-ranged spin-dep. potential
- $\sqrt{m_c} \simeq 1522$ MeV

Coulomb gauge

- ✓ Quick convergence to ground state
- $\sqrt{\ }$ Cornell-type spin-indep. potential

✓ Short-ranged spin-dep. potential $\sqrt{m_c} \simeq 1932$ MeV

- ✦ Several features of Landau gauge result compared to Coulomb gauge
	- Wider NBS wave function
	- Smaller m_c
	- Stronger spin-dep. potential
	- Good agreement of spin-indep. potential except at long distance
- \blacklozenge We attempted to improve the convergence of Landau gauge results by the time-dep. NBS amplitude method. It failed due to the contamination above open-charm threshold.

Outlook

- $\sqrt{\ }$ We will use an improved source obtained by the variational method in Landau gauge.
- 18 ✓ We will replace Kawanai-Sasaki's prescription by the one proposed in K.Watanabe, PRD105,074510.