Diquark mass and quark-diquark potential of the $1^+{\rm diquark}$ in Σ_c from Lattice QCD

Soya Nishioka, Noriyoshi Ishii RCNP, Osaka Univ.

Introduction

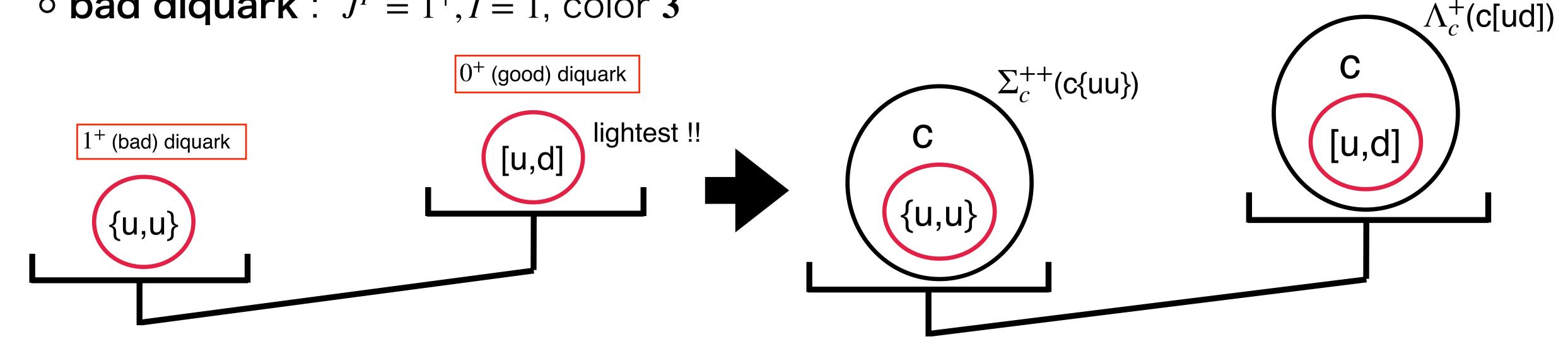
Diquark is a composite particle made of two quarks

Diquarks are colored particles

$$3\otimes 3=\bar{3}\oplus 6$$

Color 6 diquarks are considered to be much heavy.

- Phenomenologically important diquarks: favored by (1) one-gluon exchange interaction (2) instanton-induced interaction
 - o good diquark : $J^P = 0^+, I = 0$, color $\bar{3}$
 - bad diquark : $J^P = 1^+, I = 1$, color $\bar{3}$



Experimental study: Difficult because of color confinement

Lattice QCD studies of diquarks

Conventional method may not work in obtaining diquark mass due to color confinement

—- We should not assume that 2-point functions have a pole for colored particles.

F. T.
$$\langle D(x)D^{\dagger}(0)\rangle = \frac{i}{q^2 - m^2 + i\epsilon} + \cdots$$

cf. Review on quark mass in PDG2020

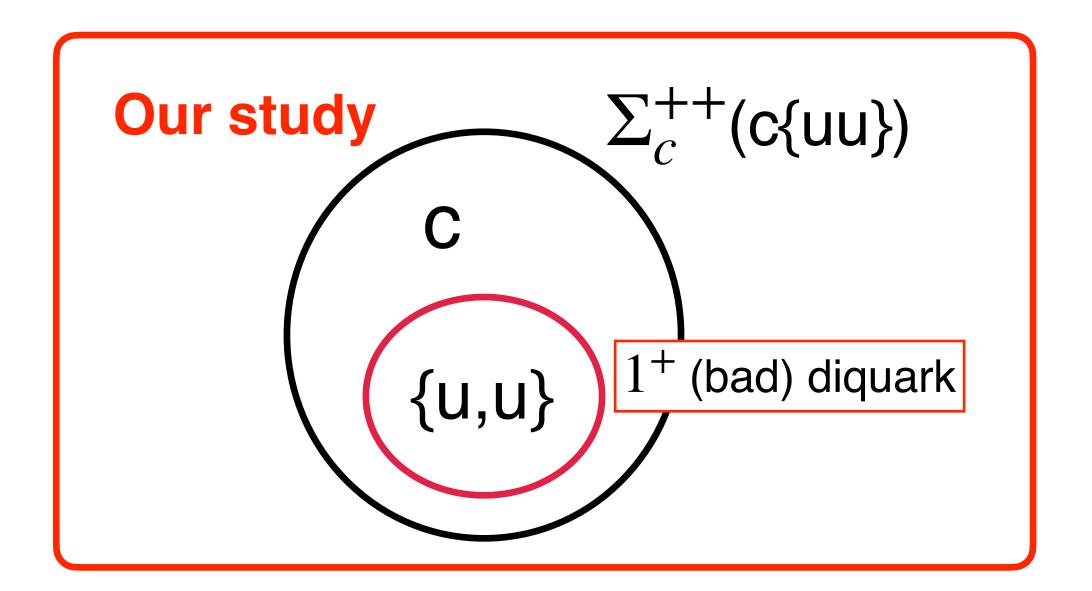
Diquark masses have been treated as follows.

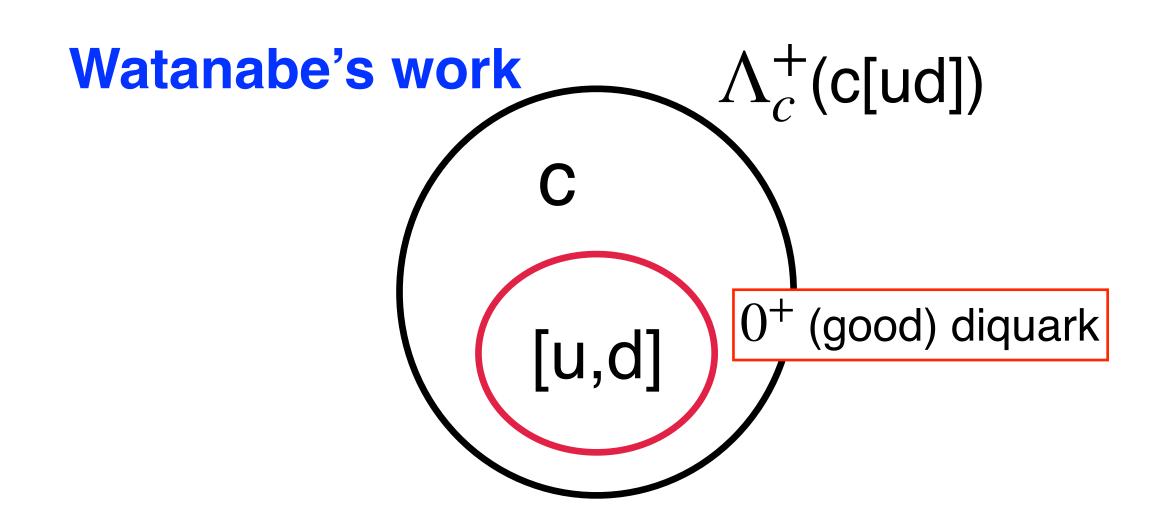
- M.Hess et al.,PRD.58.11502
 Landau gauge fixing is employed
 Diquark mass is naively obtained from two-point function as a pole-mass.
- C.Alexandrou et al., PRL.97.222002
 A static quark is added to neutralize the system.
 Diquark mass is obtained by neglecting interaction energy between a diquark and a static quark.
- o K.Watanabe, PRD.105.074510 0^+ diquark mass is treated as a mass parameter of a quark-diquark model which is constructed by an extended HAL QCD's potential method.

Our goal

o We study 1⁺ diquark in $\Sigma_c^{++}(c\{uu\})$.

We employ a similar strategy as K.Watanabe, PRD 105 where 0^+ diquark in $\Lambda_c(c[ud])$ was studied.





We obtain

quark-diquark potential
 by an extended HAL QCD's potential method from equal-time NBS wave function.

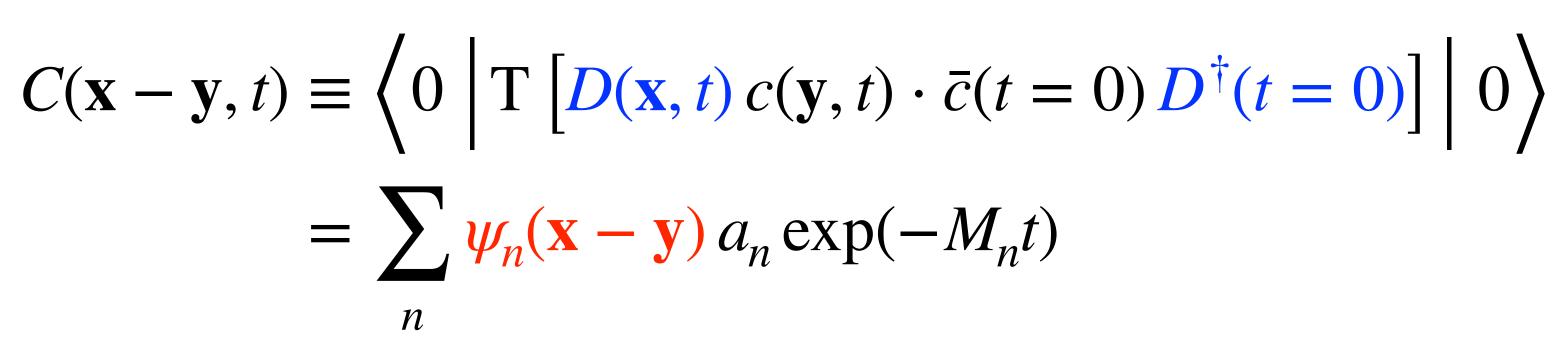
• 1⁺ **diquark mass** as a mass parameter of a quark-diquark model. Diquark mass is determined by employing a similar prescription which was proposed by T.Kawanai and S.Sasaki in ccbar sector.

Formalism

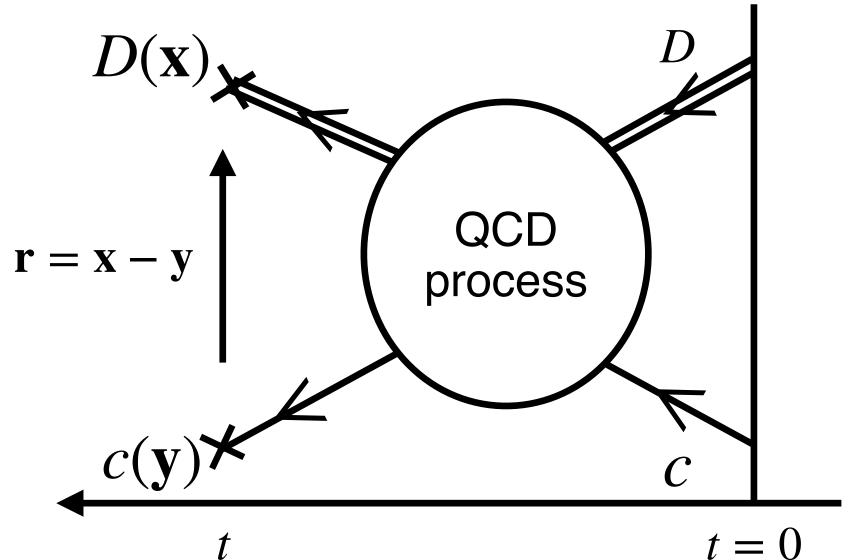
wall source

Quark-diquark wave function

o Quark-diquark 4-point function and its spectral decomposition



o 1⁺ diquark operator
$$D_{ai}(x) \equiv \epsilon_{abc} u_b^T(x) C \gamma_5 \gamma_i u_c(x)$$

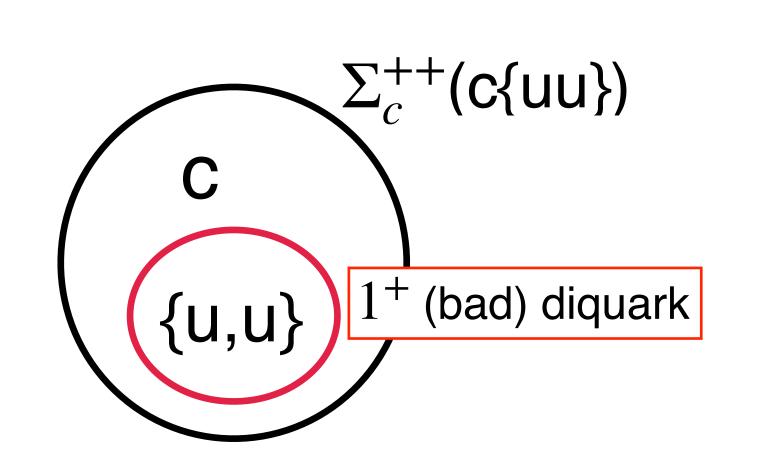


 \circ Equal time quark-diquark Nambu-Bethe-Salpeter (NBS) wave function for Σ_c^{++}

$$\psi_{i\alpha}(\mathbf{x} - \mathbf{y}) \equiv \langle 0 \ D_{ai}(\mathbf{x}) c_{a\alpha}(\mathbf{y}) \ \Sigma_c \rangle$$

Rarita-Schwinger form is used for ψ . Spin of swave Σ_c is 1/2 or 3/2.

$$1\otimes\frac{1}{2}=\frac{1}{2}\oplus\frac{3}{2}$$



Conventional HAL QCD's potential method

We demand that NBS wave function should satisfy Schroedinger eq.

$$\left(-\frac{\nabla^2}{2\mu} + \hat{V}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r}) \quad \text{with} \quad \hat{V} \simeq V_0(r) + V_S(r)\mathbf{s}_c \cdot \mathbf{s}_D$$

which split into

Schroedinger eq. in each channel

$$\left(-\frac{\nabla^2}{2\mu} + V_0(\mathbf{r}) - V_s(\mathbf{r})\right) \psi_{1/2}(\mathbf{r}) = \left(M_{1/2} - m_c - m_D\right) \psi_{1/2}(\mathbf{r}) \qquad (J = 1/2)$$

$$\left(-\frac{\nabla^2}{2\mu} + V_0(\mathbf{r}) + \frac{1}{2}V_s(\mathbf{r})\right) \psi_{3/2}(\mathbf{r}) = \left(M_{3/2} - m_c - m_D\right) \psi_{3/2}(\mathbf{r}) \qquad (J = 3/2)$$

We solve them inversely for potentials

Central potential

$$V_0(\mathbf{r}) = \frac{2M_{3/2} + M_{1/2}}{3} - m_c - m_D + \frac{1}{2\mu} \left(\frac{2}{3} \frac{\nabla^2 \psi_{3/2}(\mathbf{r})}{\psi_{3/2}(\mathbf{r})} + \frac{1}{3} \frac{\nabla^2 \psi_{1/2}(\mathbf{r})}{\psi_{1/2}(\mathbf{r})} \right)$$

Spin dependent potential

$$V_{\rm S}(\mathbf{r}) = \frac{2}{3} (M_{3/2} - M_{1/2}) - \frac{1}{3\mu} \left(\frac{\nabla^2 \psi_{3/2}(\mathbf{r})}{\psi_{3/2}(\mathbf{r})} - \frac{\nabla^2 \psi_{1/2}(\mathbf{r})}{\psi_{1/2}(\mathbf{r})} \right)$$

$$\mathbf{s}_c \cdot \mathbf{s}_D = \begin{pmatrix} -1 & (J = 1/2) \\ 1/2 & (J = 3/2) \end{pmatrix}$$

- charm quark mass m_c
- 1^+ diquark mass m_D
- $^{\bullet}$ "binding energy" $E \equiv m_{\Sigma_c} m_c m_D$
- reduced mass $\mu \equiv \frac{1}{1/m_c + 1/m_D}$
- for J=1/2, 3/2 baryon mass M_J wave function ψ_J

We encounter a PROBLEM:

Choice of m_c and m_D is not obvious. (2-point function should not be used due to confinement.)

Kawanai-Sasaki prescription to determine diquark mass

Kawanai and Sasaki proposed a self-consistent method to determine quark mass. (PRL107.091601)

By applying their prescription to quark-diquark system, we demand

$$V_{\rm S}(\mathbf{r}) = \frac{2}{3} (M_{3/2} - M_{1/2}) - \frac{1}{3\mu} \left(\frac{\nabla^2 \psi_{3/2}(\mathbf{r})}{\psi_{3/2}(\mathbf{r})} - \frac{\nabla^2 \psi_{1/2}(\mathbf{r})}{\psi_{1/2}(\mathbf{r})} \right) \to 0 \quad \text{as} \quad \mathbf{r} \to \infty$$

This leads to

Kawanai-Sasaki condition for quark-diquark system

$$\mu = -\lim_{r \to \infty} \frac{1}{2(M_{3/2} - M_{1/2})} \left(\frac{\nabla^2 \psi_{3/2}(\mathbf{r})}{\psi_{3/2}(\mathbf{r})} - \frac{\nabla^2 \psi_{1/2}(\mathbf{r})}{\psi_{1/2}(\mathbf{r})} \right) \qquad \qquad m_D = \frac{1}{1/\mu - 1/m_c}$$

Using m_c from Kawanai-Sasaki prescription in $c\bar{c}$ sector.

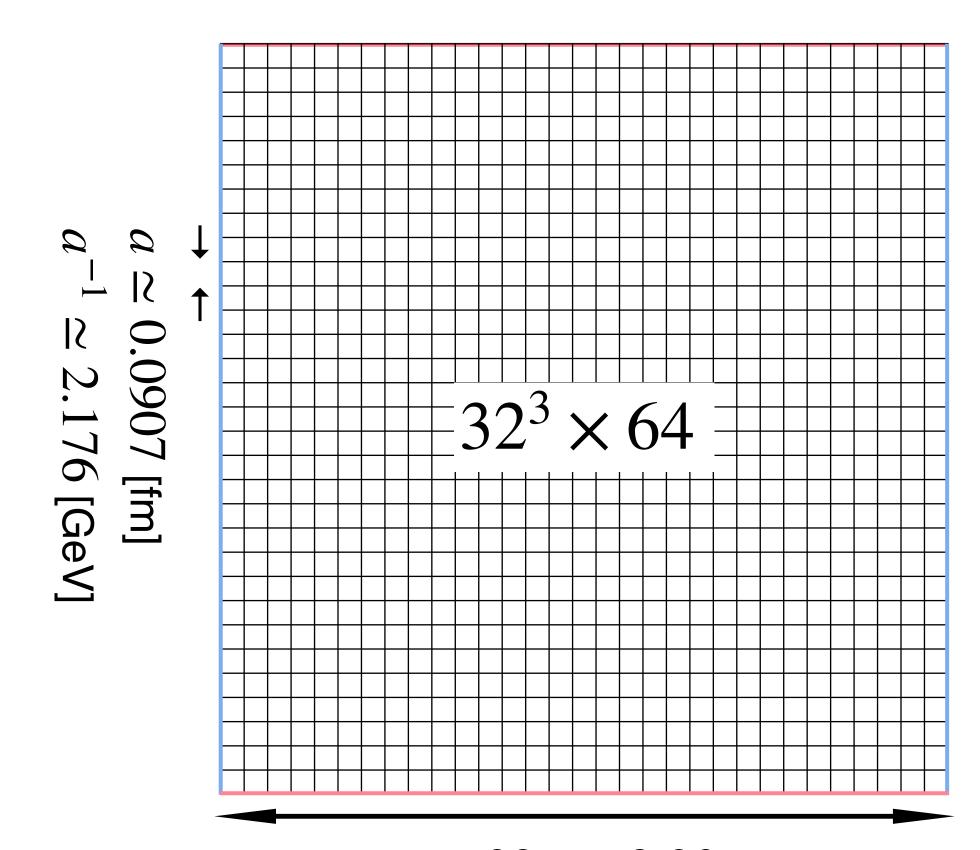
$$m_D = \frac{1}{1/\mu - 1/m_c}$$

- Combining HAL QCD's potential method with Kawanai-Sasaki prescription provides a self-consistent way to obtain diquark mass and quark-diquark potential
- This approach avoids the issue of pole-mass in 2-point function of diquark. (Diquark mass is obtained as a mass parameter of quark-diquark model)

Numerical Results

Lattice QCD setup

- $^{\circ}$ 2+1 flavor QCD gauge config. on $32^{3} \times 64$ lattice [Ukita et al., PACS-CS Coll., PRD.79.034503]
 - o RG improved Iwasaki gauge action ($\beta=1.90$) O(a)-improved Wilson quark action ($\kappa_{ud}=0.137$, $C_{SW}=1.715$)
 - \circ Lattice spacing $a=0.0907~{\rm fm}$ $1/a=2.176~{\rm GeV}$ Spacial extension $L=2.90~{\rm fm}$
- Charm quark added with quenched approx.
 Relativistic heavy quark action
 [Namekawa et al., PACS-CS Coll., PRD.84.074505]
- o Coulomb gauge fixing is employed



$$L = 32a \simeq 2.90 \text{ [fm]}$$

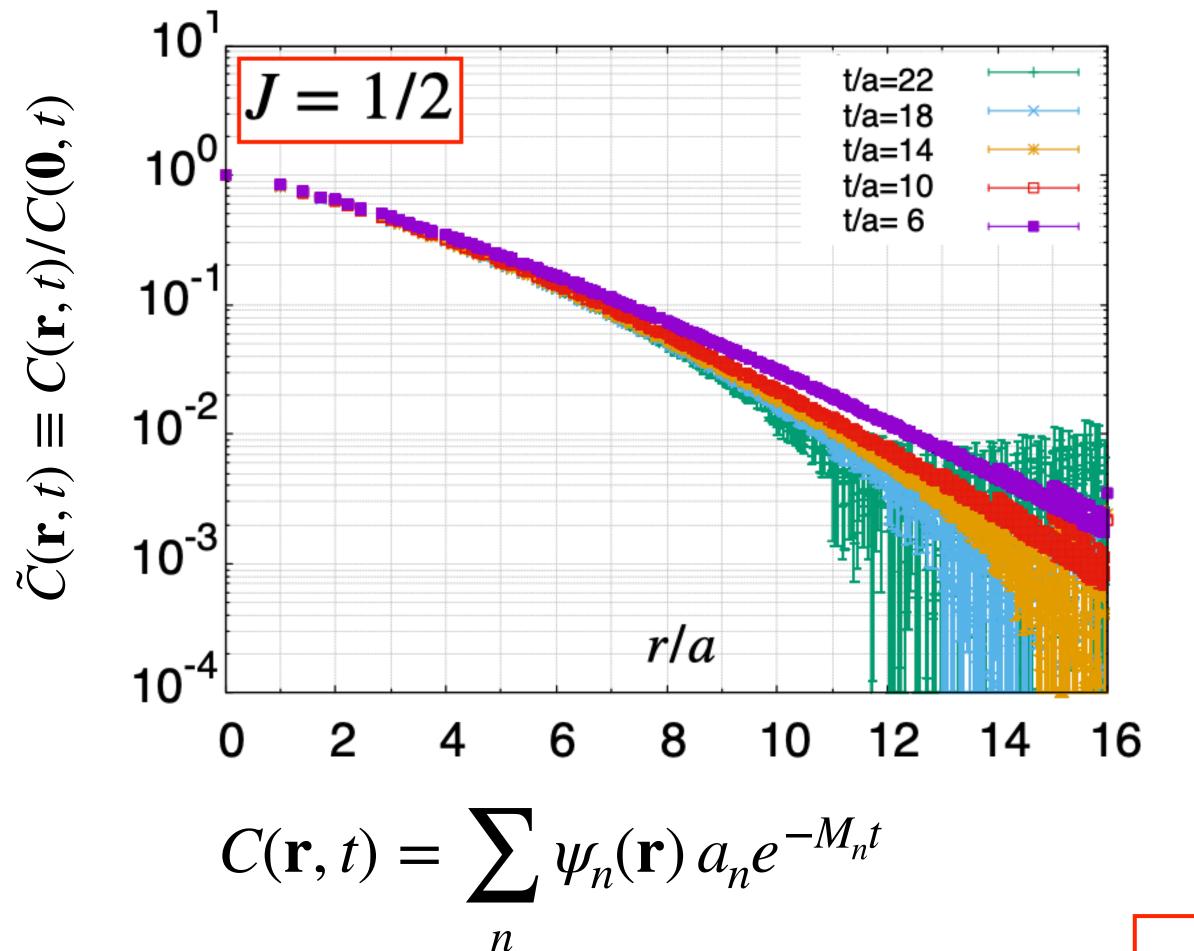
These setup reproduce typical hadron mass

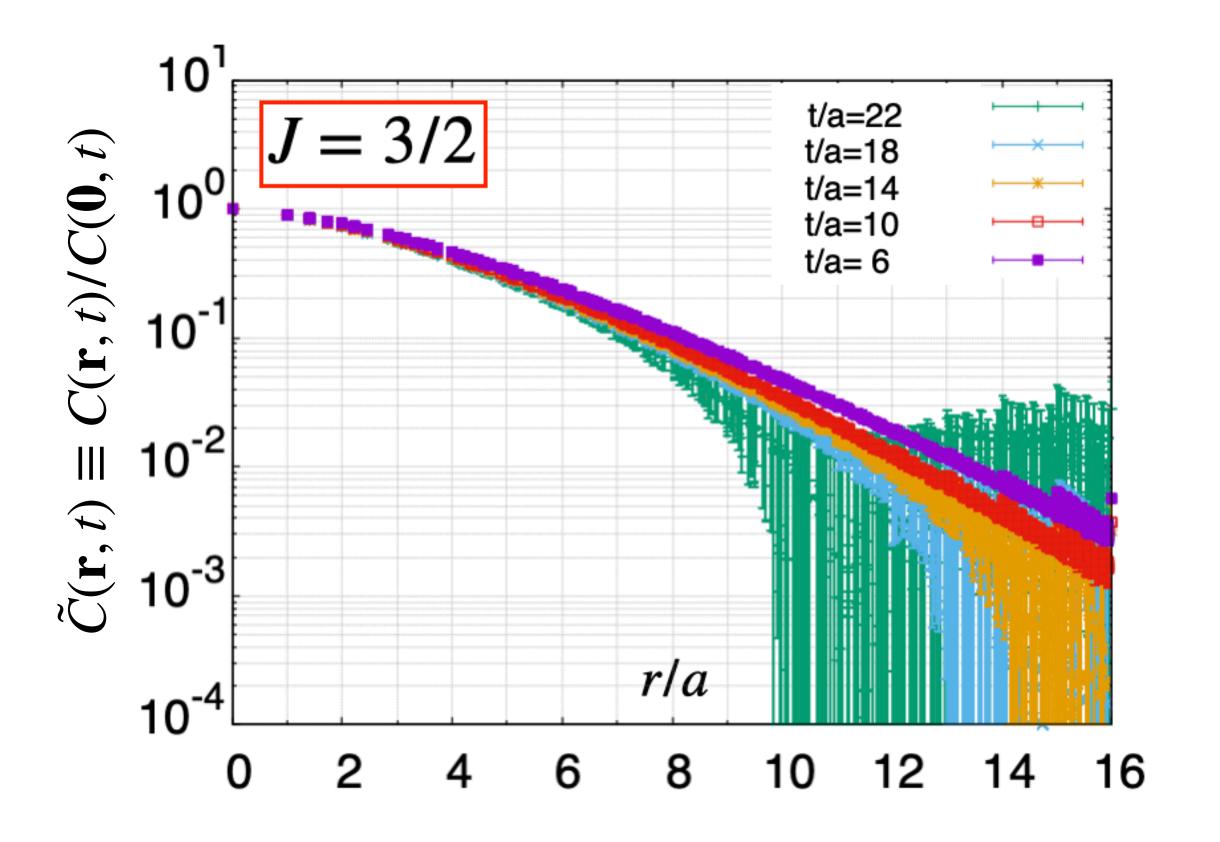
$$m_{\pi} \sim 700 \, \text{MeV}, m_{N} \sim 1600 \, \text{MeV}$$

 $m_{\eta_{c}} \sim 3025 \, \text{MeV}, m_{J/\psi} \sim 3144 \, \text{MeV}$

$$m_{\Lambda_c} \sim 2691 \, {
m MeV}$$
 $m_{\Sigma_c(J=1/2)} \sim 2777 \, {
m MeV}$, $m_{\Sigma_c(J=3/2)} \sim 2859 \, {
m MeV}$

4-point function and NBS wave function





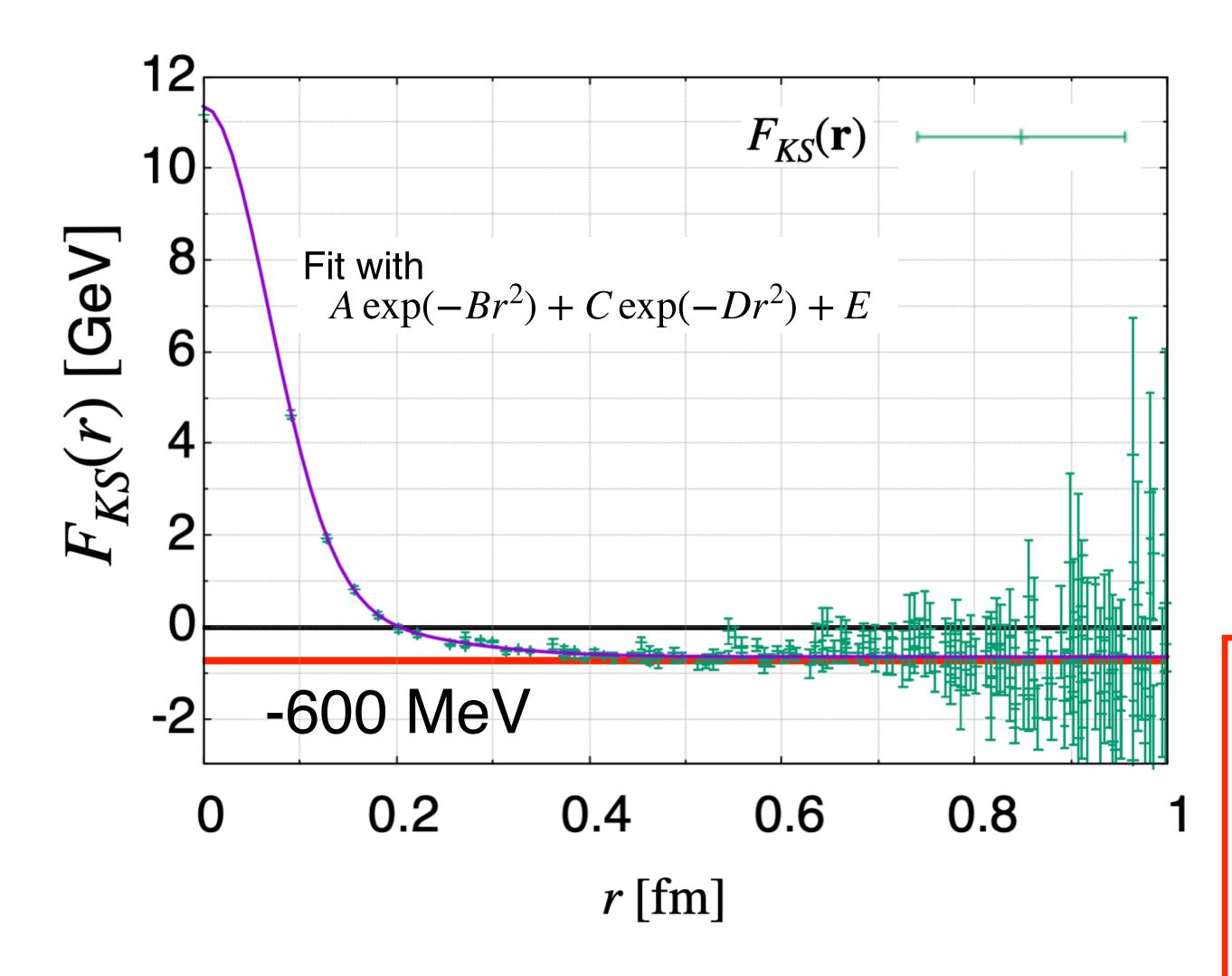
$$C(\mathbf{r}, t) = \sum_{n} \psi_{n}(\mathbf{r}) a_{n} e^{-M_{n}t}$$

$$\to \psi_{0}(\mathbf{r}) a_{0} e^{-M_{0}t} \text{ for large } t$$

Rough convergence is achieved at t/a = 18 in the region $r < 10a \sim 0.9$ fm.

4-point func. at t/a=18 is accepted as a converged NBS wave func. (t/a=22 has too large error bar to be accepted)

Determination of diquark mass



Kawanai-Sasaki function

$$F_{\text{KS}}(\mathbf{r}) \equiv \frac{1}{2(M_{3/2} - M_{1/2})} \left(\frac{\nabla^2 \psi_{3/2}(\mathbf{r})}{\psi_{3/2}(\mathbf{r})} - \frac{\nabla^2 \psi_{1/2}(\mathbf{r})}{\psi_{1/2}(\mathbf{r})} \right)$$

Reduced mass is determined by

Kawanai-Sasaki condition

$$\mu = -\lim_{r \to \infty} F_{KS}(\mathbf{r}) \sim 600 \,\mathrm{MeV}$$

Diquark mass

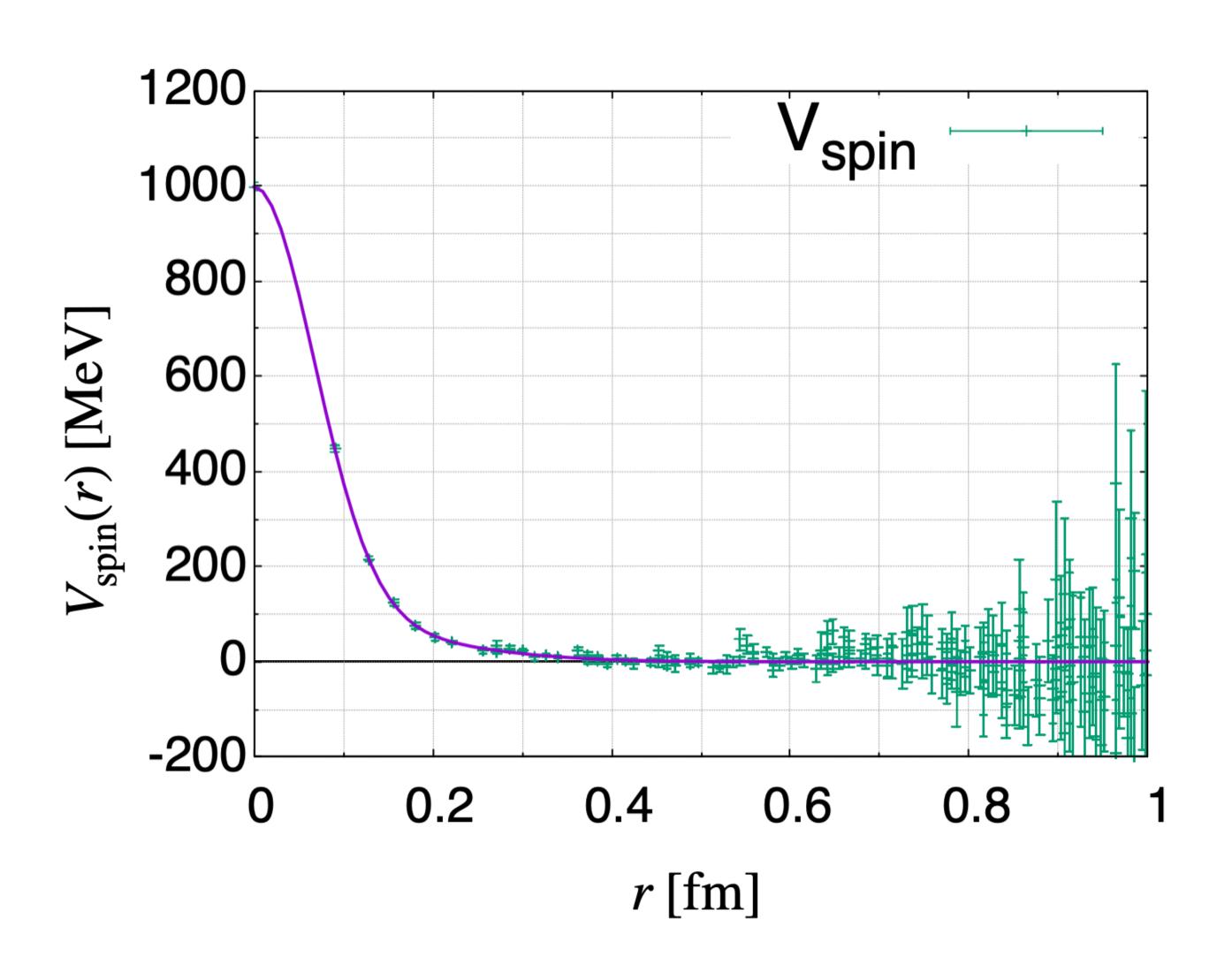
$$m_D = \frac{1}{1/\mu - 1/m_c} \simeq 867 \,\text{MeV}$$

where charm quark mass

 $m_c \simeq 1950 \, \mathrm{MeV}$ (from ccbar sector)

Spin-dependent (quark-diquark) potential

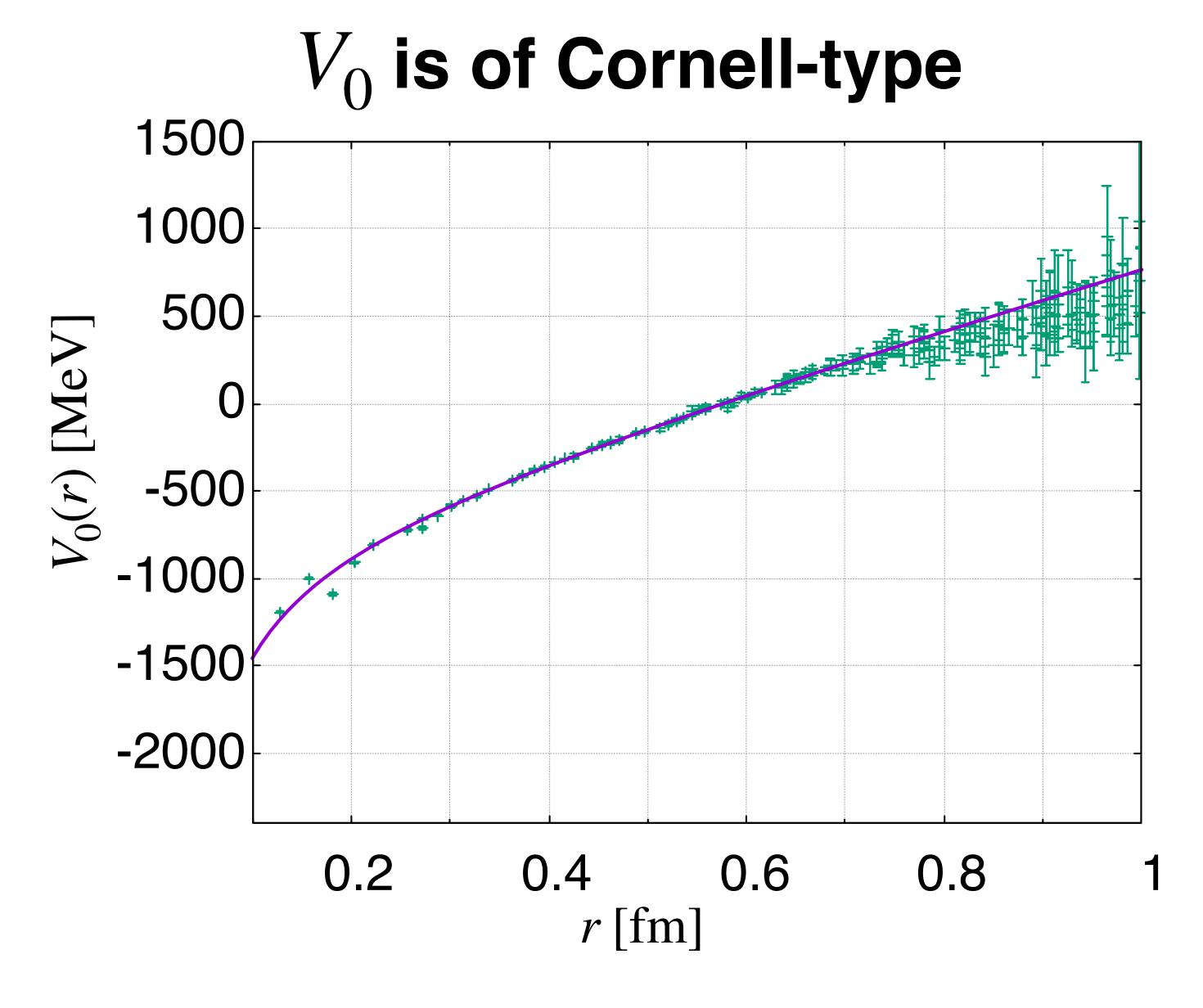
$V_{ m spin}$ is short-ranged



fit with 2-gaussian func. form

$$A\exp(-Br^2) + C\exp(-Dr^2)$$

Spin-indep. (quark-diquark) potential



Fit with Cornell type func. form

$$-A/r + \sigma r + const$$

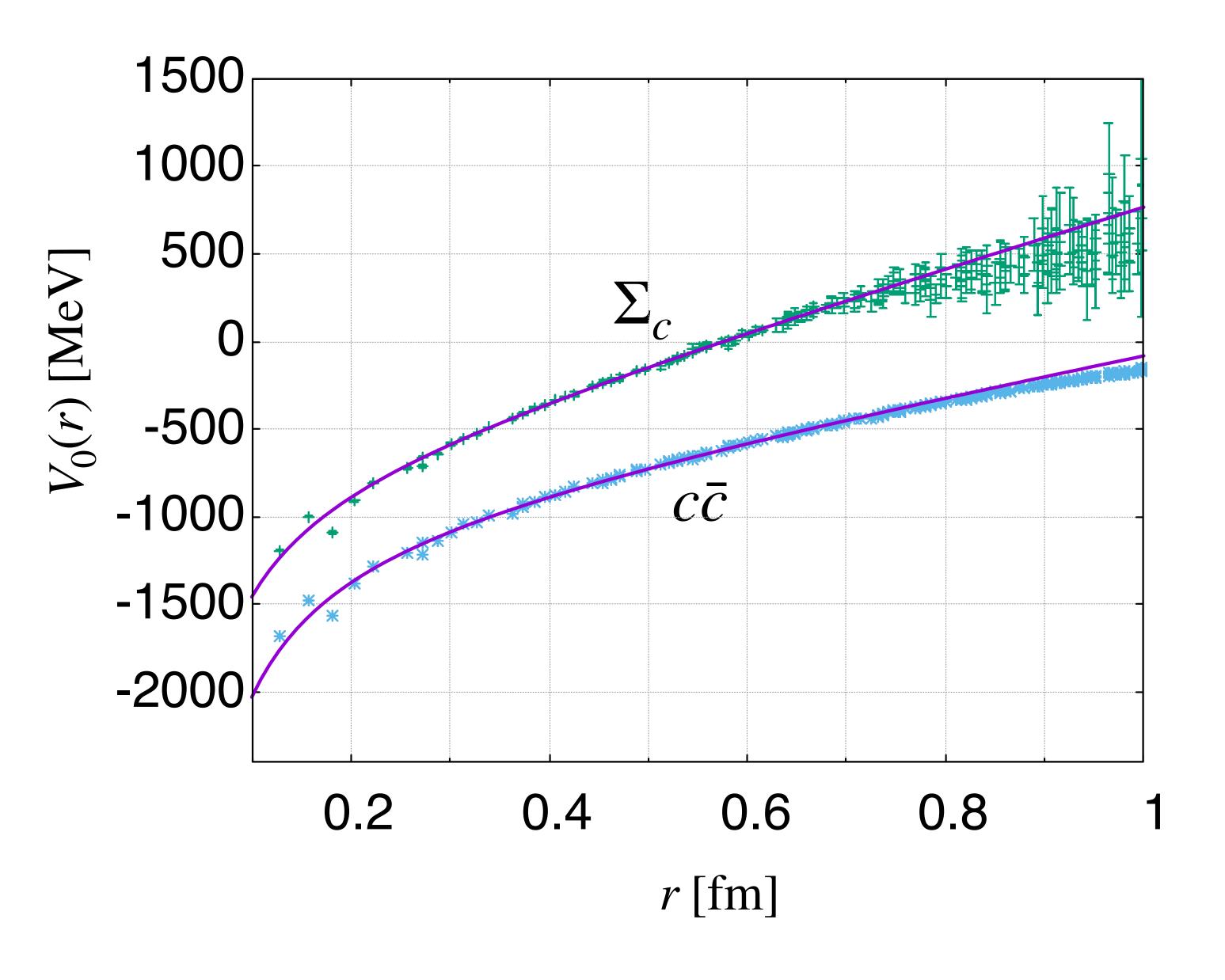
$$A = 86 \text{ MeV/fm}$$

$$\sqrt{\sigma} = 565 \text{ MeV}$$

Our feeling:

A and σ may be overestimated due to possible underestimate of m_D .

Quark diquark potential vs $c\bar{c}$ potential



Fitting function

$$-A/r + \sigma r + const$$

Coulomb coefficient

$$\Sigma_c$$
 $A=86$ MeV/fm $c\bar{c}$ $A=103$ MeV/fm

String tension

$$\sum_{c} \sqrt{\sigma} = 565 \text{ MeV}$$

$$c\bar{c} \sqrt{\sigma} = 459 \text{ MeV}$$

Summary

- \circ An extended HAL QCD method was applied to Σ_c (c-{uu}) in the heavy quark mass region to study 1^+ diquark mass and quark-diquark potentials by 2+1 flavor lattice QCD
 - o 1⁺diquark mass was obtained by using Kawanai-Sasaki prescription.
 - Central potential is of Cornell type
 - Spin dependent potential is short-ranged

°
$$m_D \sim 867~{
m MeV}~\sqrt{\sigma} = 565~{
m MeV}~A = 86~{
m MeV/fm}$$
 Precise evaluation is needed. We feel that Diquark mass may be a bit underestimated. σ and A may be a bit overestimated. $F_{\rm KS}(r)$ is noisy at long distance

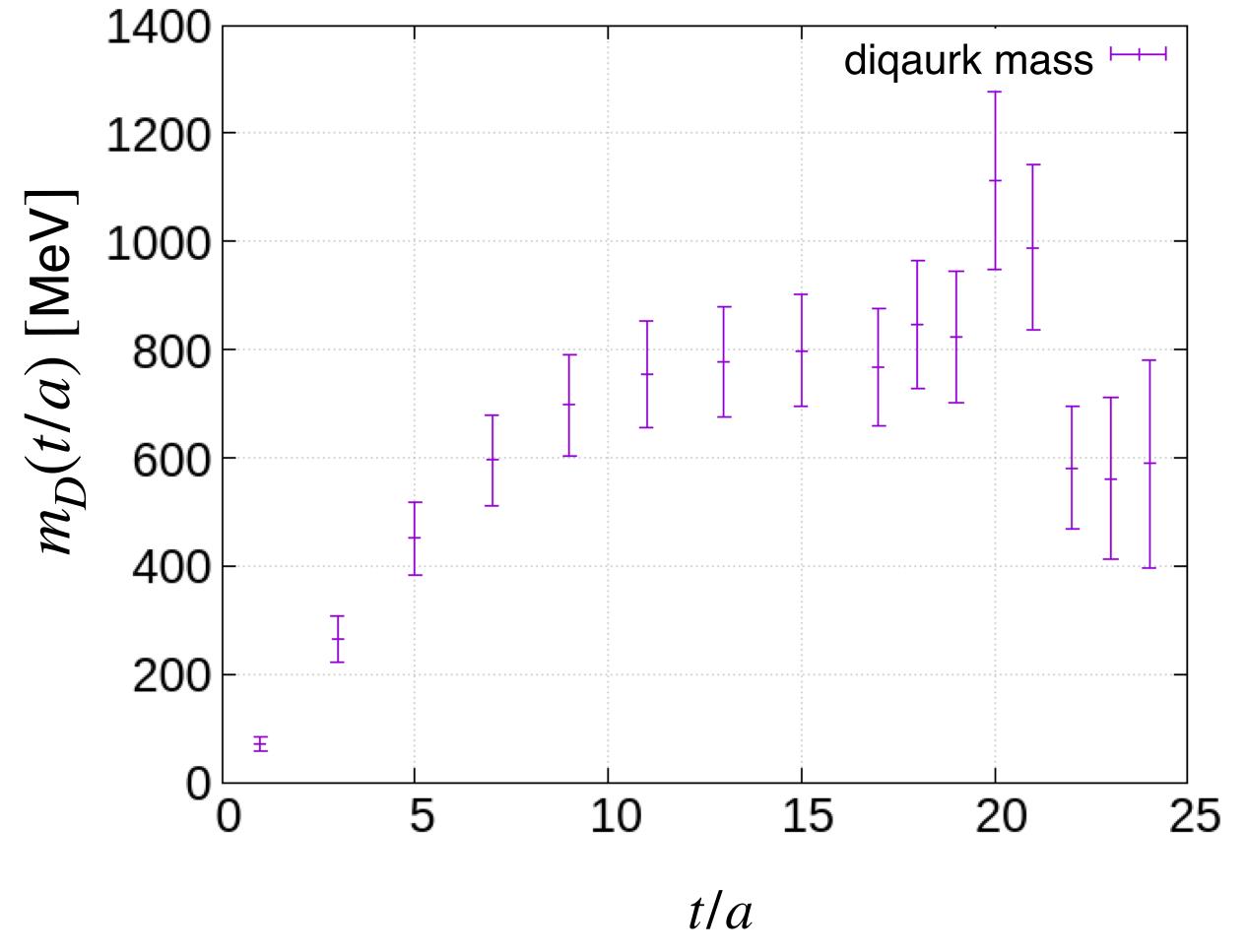
oFuture plans

- o Quark mass dependence
- $^{\circ}$ Comparison of our 1^+ diquark result with 0^+ diquark in K.Watanabe, PRD.105.074510 (He obtained $m_{0^+} \sim 1.27$ GeV by a similar but different method) Several things have to be fixed before the comparison
 - Watanabe employs $m_c \sim 1.840 {\rm GeV}$ whereas ours is $m_c \sim 1.950 {\rm GeV}$. (This is due to different formalism employed to obtain charm quark mass)
 - ullet Large statistical noise of Kawanai-Sasaki function at long distance has to be improved for precise determination of 1^+ diquark mass.

Backup

Determination of diquark mass

t-dependence of the diquark mass m_D



- m_D increases with tapproaching a constant value $m_D \sim 800$ MeV in the region $t \geq 15$.
- In the following slides, we employ $t/a \sim 18$, where sufficient convergence is achieved.

2 point function -> mass split of Σ_c

o 2-point function

$$G_{i\alpha j\beta}(t) \equiv \sum_{\overrightarrow{x}} \langle B_{i\alpha}(\overrightarrow{x}, t) \overline{B}_{j\beta}(0) \rangle$$

(Baryon operator $B_{i\alpha}(\overrightarrow{x}, \overrightarrow{y}, t) \equiv D_i^a(\overrightarrow{x}, t)c_{a\alpha}(\overrightarrow{y}, t)$)

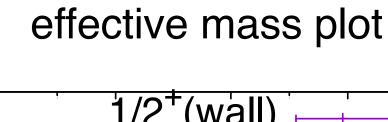
 \circ Let $g_J(t)$ be projection of this operator onto the spin J state

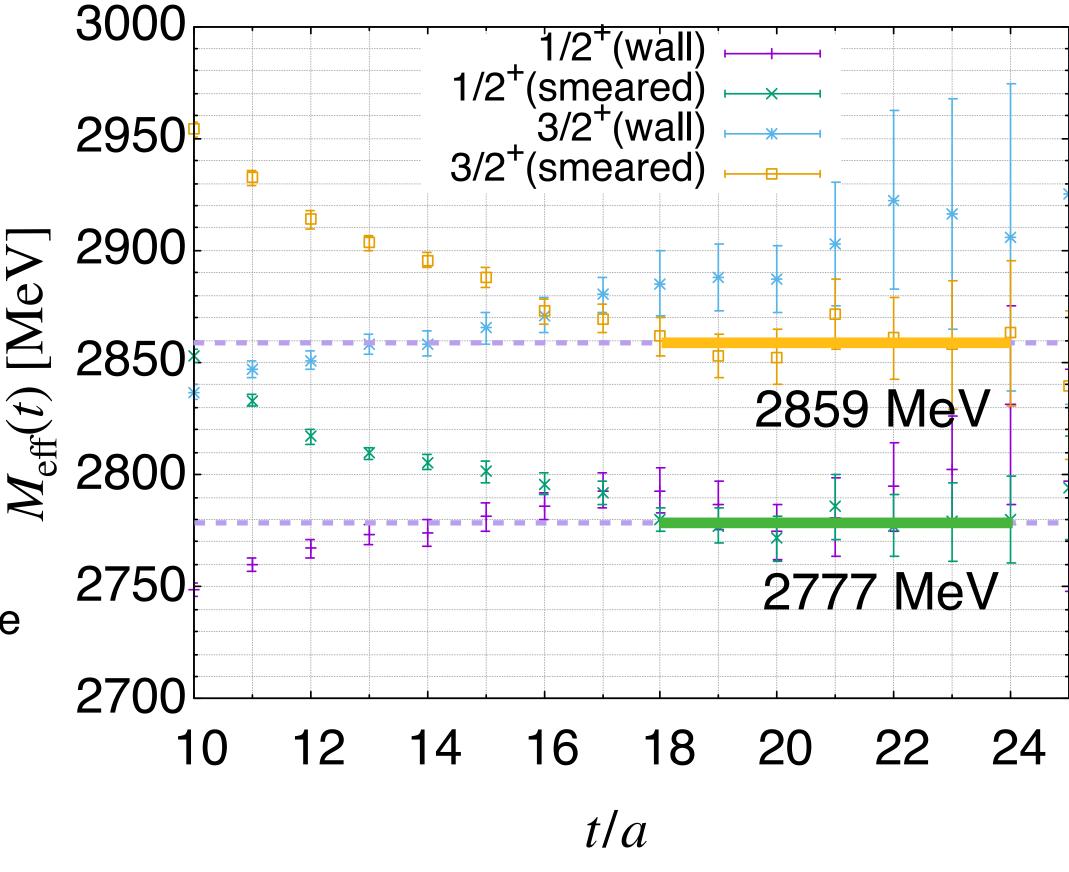
$$g_J(t) \xrightarrow{\text{large t}} Ae^{-M_J t}$$

 \circ Take M_J from the effective mass to obtain the mass difference

$$M_{\text{eff}}^{J}(t) \equiv \log \frac{g_J(t)}{g_J(t+1)}$$

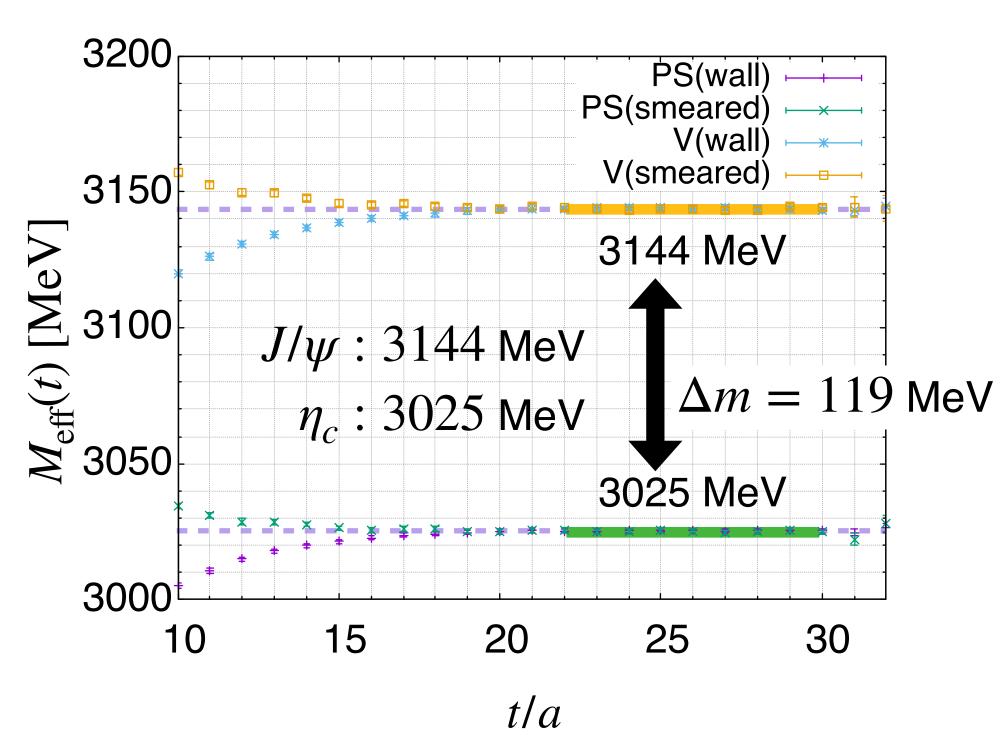
This is called the effective mass, which asymptotically approaches ${\cal M}_J$ in the large t region.





$$M_{3/2} - M_{1/2} = 82(8) \text{ MeV}$$

$c\bar{c}$ sector

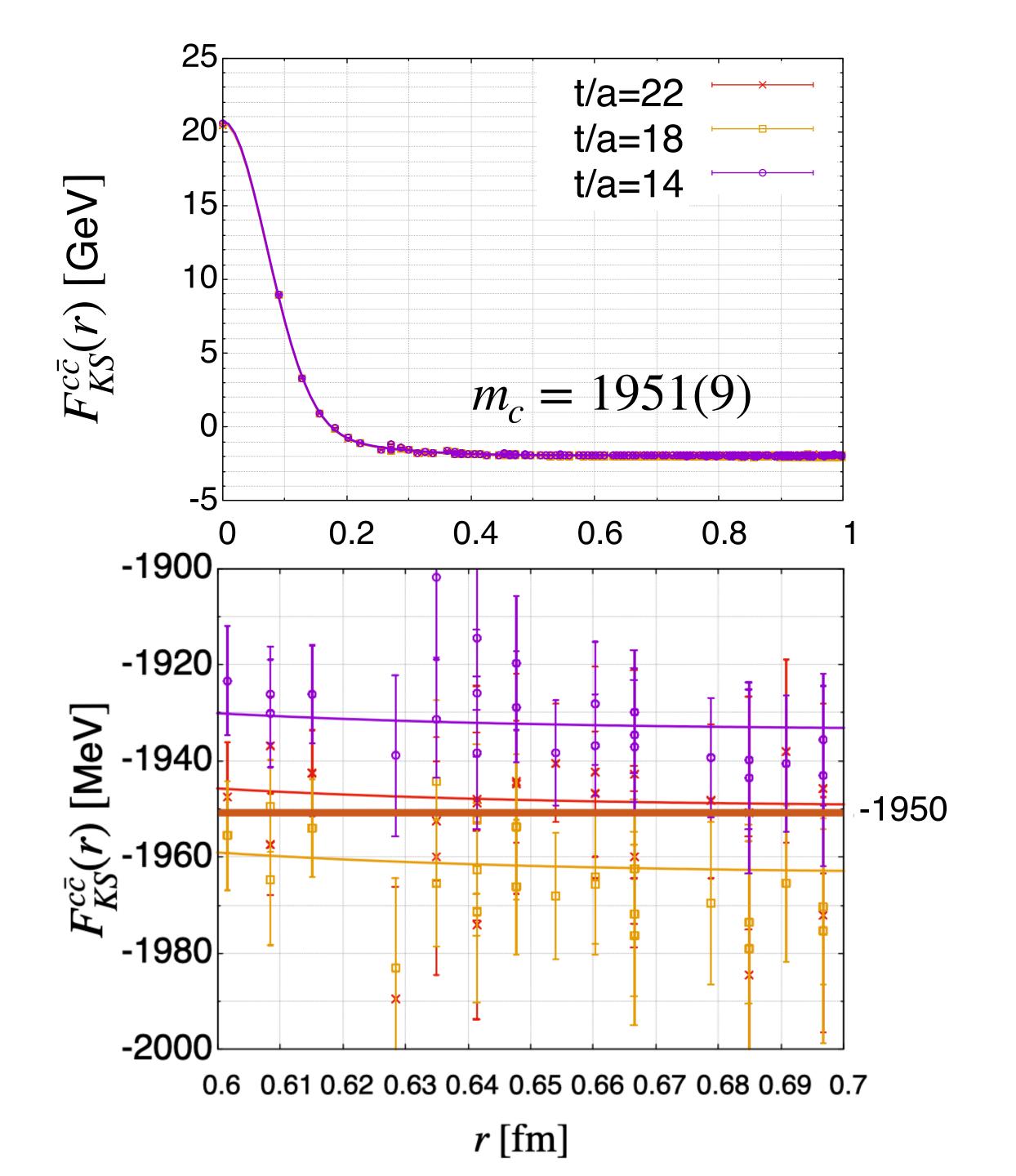


Kawanai-Sasaki condition

$$m_c = -\lim_{r \to \infty} F_{\text{KS}}^{c\bar{c}}(\mathbf{r})$$

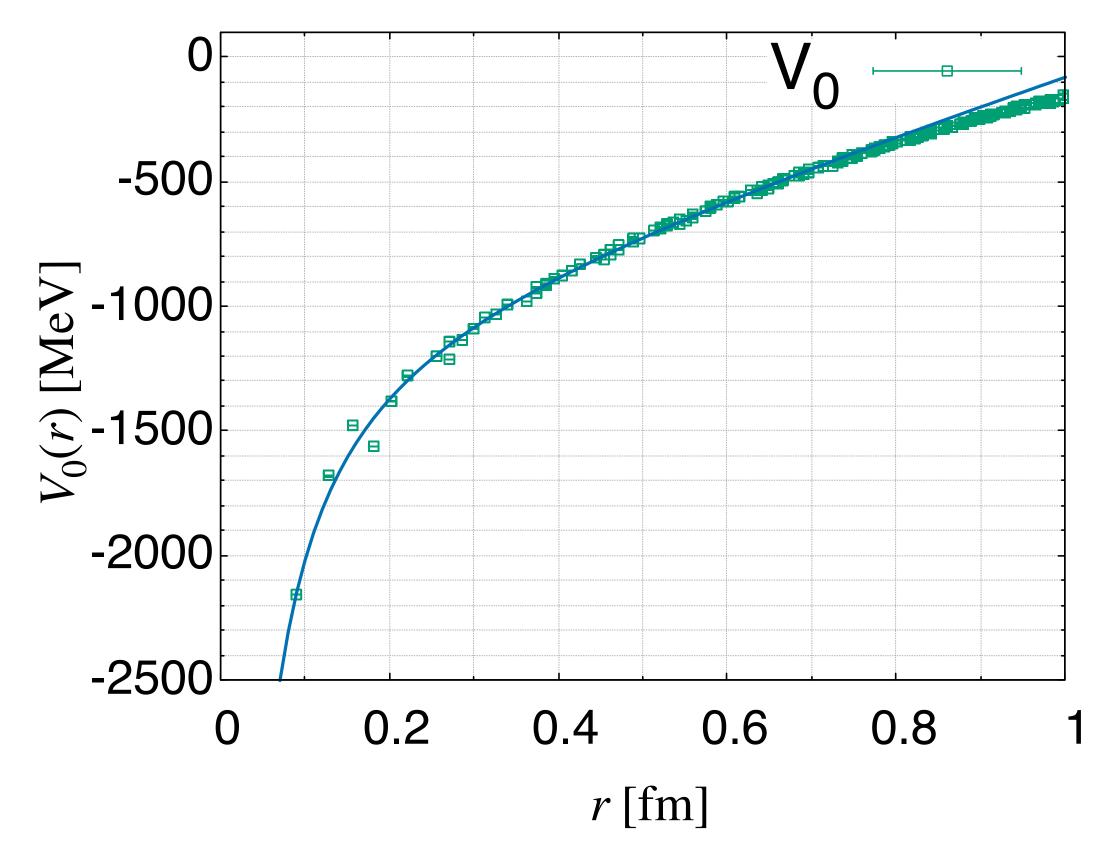
$$F_{\text{KS}}^{c\bar{c}}(\mathbf{r}) \equiv \frac{1}{\Delta m} \left(\frac{\nabla^2 \psi_{J/\psi}(\mathbf{r})}{\psi_{J/\psi}(\mathbf{r})} - \frac{\nabla^2 \psi_{\eta_c}(\mathbf{r})}{\psi_{\eta_c}(\mathbf{r})} \right)$$

→ Charm quark mass: 1950(9) MeV



$c\bar{c}$ sector

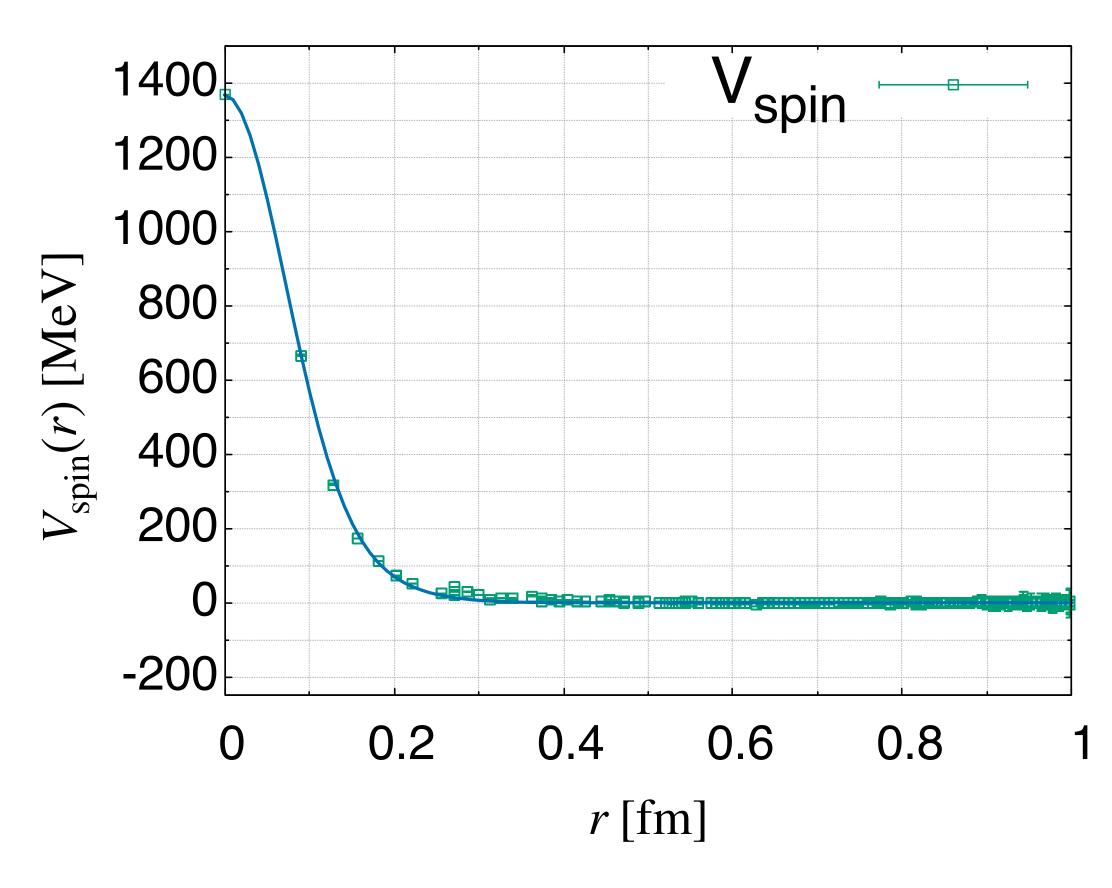
$-A/r + \sigma r + const$



 $A \sim 0.526$ (Lattice unit)

$$\sqrt{\sigma}=459~{\rm MeV}$$

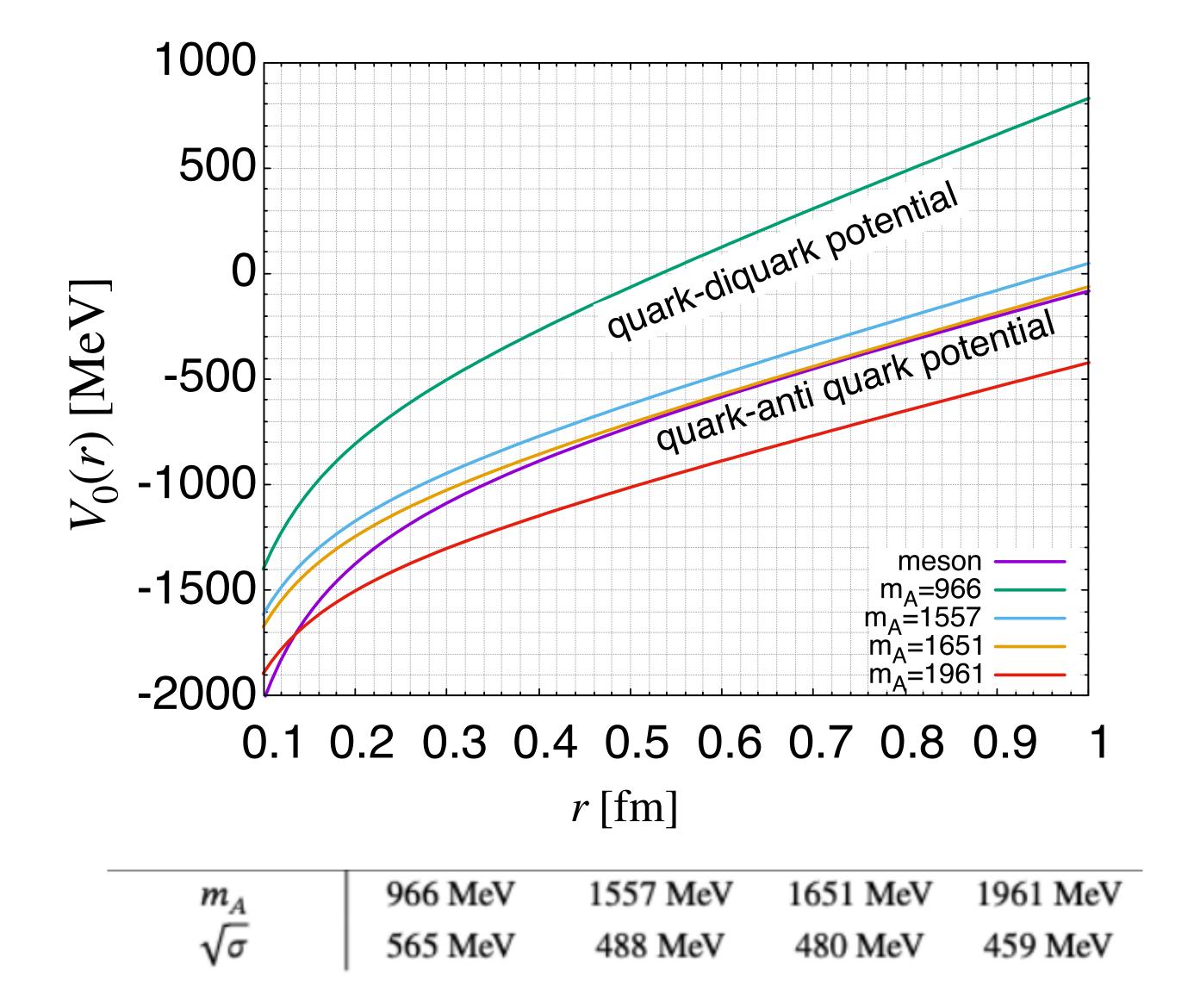
$$A \exp(-Br^2) + C \exp(-Dr^2)$$



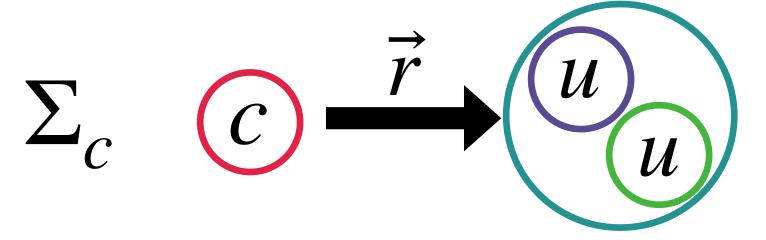
A=1283 MeV, B=0.80(Lattice unit)

$$C = 90 \text{ MeV}, \quad D = 0.14 \text{(Lattice unit)}$$

m_D vs spin independent potential



 $\operatorname{color} 3 \qquad \qquad \operatorname{color} \bar{3}$



Far enough away, the behavior is the same.

$$c\bar{c}$$
 c c c

Distance-dependent part of spin-independent potential

$$-A/r + \sigma r = \frac{1}{6\mu} (\tilde{V}(r) - \tilde{V}(\sqrt{\frac{A}{\sigma}}))$$
 where, $\tilde{V}(r) = \frac{\nabla^2 \psi_{1/2}}{\psi_{1/2}} + 2 \frac{\nabla^2 \psi_{3/2}}{\psi_{3/2}}$

 m_D increase $\Rightarrow \mu$ increase $\Rightarrow \sigma$ decrease Larger m_D may be more natural