Proton radii for muonic hydrogen spectroscopy from lattice QCD

Miguel Salg, Dalibor Djukanovic, Georg von Hippel, Harvey B. Meyer, Konstantin Ottnad, Hartmut Wittig

LATTICE 2024, August 2, 2024

Miguel Salg (JGU Mainz) Proton radii for μ [H spectroscopy from lattice QCD](#page-21-0) LATTICE 2024, August 2, 2024

2 [Lattice setup and form factor calculation](#page-4-0) [PRD 109[, 094510\]](https://doi.org/10.1103/PhysRevD.109.094510)

3 [Zemach and Friar radii from the lattice](#page-11-0) [PRD 110[, L011503\]](https://doi.org/10.1103/PhysRevD.110.L011503)

[Model average and final results](#page-16-0)

5 [Conclusions and outlook](#page-20-0)

- "Proton radius puzzle": discrepancy between different determinations of the electric and magnetic radii of the proton
- In lattice QCD as in the context of scattering experiments: electromagnetic radii extracted from slope of corresponding form factors at $Q^2 = 0$
- Tension between Q^2 -dependence of form factors from different experiments

- Accurate determination of proton radii from muonic hydrogen spectroscopy \Rightarrow other definitions of radii, not previously computed on the lattice, become relevant
- Upcoming high-precision measurements of hyperfine splitting in muonic hydrogen by FAMU and CREMA

- o Lamb shift
	- LO proton-structure contribution: electric radius
	- NLO: two-photon exchange, dominated by elastic part, depends on third Zemach moment 1,

$$
\langle r_E^3 \rangle_{(2)}^p = \frac{24}{\pi} \int_0^\infty \frac{dQ^2}{(Q^2)^{5/2}} \left[(G_E^p(Q^2))^2 - 1 + \frac{1}{3} \langle r_E^2 \rangle^p Q^2 \right] \tag{1}
$$

- Associated radius: Friar radius, $r_F^p=\sqrt[3]{\langle r_E^3\rangle^p_{\langle\phi\rangle}}$ (2)
- Hyperfine splitting (HFS)
	- LO proton-structure contribution: Zemach radius²,

$$
r_Z^p = -\frac{2}{\pi} \int_0^\infty \frac{dQ^2}{(Q^2)^{3/2}} \left(\frac{G_E^p(Q^2) G_M^p(Q^2)}{\mu_M^p} - 1 \right) \tag{2}
$$

First-principles prediction of Zemach radius could be checked by high-precision experiments

¹ Friar 1979 [\[Ann. Phys.](https://doi.org/10.1016/0003-4916(79)90300-2) 122, 151]; ² Zemach 1956 [\[Phys. Rev.](https://doi.org/10.1103/PhysRev.104.1771) 104, 1771]. Miguel Salg (JGU Mainz) Proton radii for µ[H spectroscopy from lattice QCD](#page-0-0) LATTICE 2024, August 2, 2024 3

2 [Lattice setup and form factor calculation](#page-4-0) [PRD 109[, 094510\]](https://doi.org/10.1103/PhysRevD.109.094510)

3 [Zemach and Friar radii from the lattice](#page-11-0) [PRD 110[, L011503\]](https://doi.org/10.1103/PhysRevD.110.L011503)

[Model average and final results](#page-16-0)

5 [Conclusions and outlook](#page-20-0)

Coordinated Lattice Simulations (CLS)³

- Non-perturbatively $\mathcal{O}(a)$ -improved Wilson fermions, $N_f = 2 + 1$
- tr $M_q = 2m_l + m_s = \text{const.}$
- **•** Tree-level improved Lüscher-Weisz gauge action
- \odot $\mathcal{O}(a)$ -improved conserved vector current

Figure: Overview of the ensembles used in this study

³Bruno et al. 2015 [JHEP 2015 [\(2\), 43\]](https://doi.org/10.1007/JHEP02(2015)043); Bruno, Korzec, and Schaefer 2017 [PRD 95[, 074504\]](https://doi.org/10.1103/PhysRevD.95.074504).

Nucleon two- and three-point correlation functions

- Measure the two- and three-point correlation functions of the nucleon
- For three-point functions, Wick contractions yield connected and disconnected contribution
- \bullet Compute the quark loops via a stochastic estimation using a frequency-splitting technique⁴
- Extract the effective form factors $G_{E,M}^{\text{eff}}$ using the ratio method 5

⁴Giusti et al. 2019 [\[EPJC](https://doi.org/10.1140/epjc/s10052-019-7049-0) **79**, 586]; Cè et al. 2022 [JHEP 2022 [\(8\), 220\]](https://doi.org/10.1007/JHEP08(2022)220); ⁵Korzec et al. 2009 [PoS 066[, 139\]](https://doi.org/10.22323/1.066.0139). Miguel Salg (JGU Mainz) Proton radii for µ[H spectroscopy from lattice QCD](#page-0-0) LATTICE 2024, August 2, 2024

Excited-state analysis

- Summation method: parametric suppression of excited-state effects ($\propto e^{-\Delta t_{\rm sep}}$ instead of $\propto e^{-\Delta t}$, $e^{-\Delta (t_{\rm sep}-t)}$ [Δ : energy gap to lowest-lying excited state])
- Apply LO summation method with varying starting values $t_\mathrm{sep}^\mathrm{min}$ for the linear fit (ground-state form factor = slope as function of t_{sen})
- Perform a weighted average over $t_\mathrm{sep}^\mathrm{min}$, where the weights are given by a smooth window function⁶ ,

$$
\hat{G} = \frac{\sum_{i} w_i G_i}{\sum_{i} w_i}, \qquad w_i = \tanh \frac{t_i - t_w^{\text{low}}}{\Delta t_w} - \tanh \frac{t_i - t_w^{\text{up}}}{\Delta t_w}, \tag{3}
$$

where t_i is the value of $t_{\rm sep}^{\rm min}$ in the i -th fit, $t_w^{\rm low}=0.9$ fm, $t_w^{\rm up}=1.1$ fm and $\Delta t_w=0.08$ fm

- Reliable detection of the plateau with reduced human bias (same window on all ensembles)
- **Conservative error estimate**

 6 Djukanovic et al. 2022 [PRD 106[, 074503\]](https://doi.org/10.1103/PhysRevD.106.074503); Agadjanov et al. 2023 [PRL 131[, 261902\]](https://doi.org/10.1103/PhysRevLett.131.261902). Miguel Salg (JGU Mainz) Proton radii for µ[H spectroscopy from lattice QCD](#page-0-0) LATTICE 2024, August 2, 2024 6

Excited-state analysis

- Summation method: parametric suppression of excited-state effects ($\propto e^{-\Delta t_{\rm sep}}$ instead of $\propto e^{-\Delta t}$, $e^{-\Delta (t_{\rm sep}-t)}$ [Δ : energy gap to lowest-lying excited state])
- Apply LO summation method with varying starting values $t_\mathrm{sep}^\mathrm{min}$ for the linear fit

D450 ($M_n = 218$ MeV, $a = 0.076$ fm)

Miguel Salg (JGU Mainz) Proton radii for μ [H spectroscopy from lattice QCD](#page-0-0) LATTICE 2024, August 2, 2024

Excited-state analysis

- Summation method: parametric suppression of excited-state effects ($\propto e^{-\Delta t_{\rm sep}}$ instead of $\propto e^{-\Delta t}$, $e^{-\Delta (t_{\rm sep}-t)}$ [Δ : energy gap to lowest-lying excited state])
- Apply LO summation method with varying starting values $t_\mathrm{sep}^\mathrm{min}$ for the linear fit (ground-state form factor = slope as function of t_{sen})
- Perform a weighted average over $t_\mathrm{sep}^\mathrm{min}$, where the weights are given by a smooth window function⁶ ,

$$
\hat{G} = \frac{\sum_{i} w_i G_i}{\sum_{i} w_i}, \qquad w_i = \tanh \frac{t_i - t_w^{\text{low}}}{\Delta t_w} - \tanh \frac{t_i - t_w^{\text{up}}}{\Delta t_w}, \tag{3}
$$

where t_i is the value of $t_{\rm sep}^{\rm min}$ in the i -th fit, $t_w^{\rm low}=0.9$ fm, $t_w^{\rm up}=1.1$ fm and $\Delta t_w=0.08$ fm

- Reliable detection of the plateau with reduced human bias (same window on all ensembles)
- **Conservative error estimate**

 6 Djukanovic et al. 2022 [PRD 106[, 074503\]](https://doi.org/10.1103/PhysRevD.106.074503); Agadjanov et al. 2023 [PRL 131[, 261902\]](https://doi.org/10.1103/PhysRevLett.131.261902). Miguel Salg (JGU Mainz) Proton radii for µ[H spectroscopy from lattice QCD](#page-0-0) LATTICE 2024, August 2, 2024 6

Direct Baryon χ PT fits

- Combine parametrization of the Q^2 -dependence with the chiral, continuum, and infinite-volume extrapolation
- Use expressions from covariant baryon chiral perturbation theory⁷ to perform simultaneous fit to the pion-mass, Q^2 -, lattice-spacing, and finite-volume dependence of the form factors
- Include contributions from the ρ (ω and ϕ) mesons in the isovector (isoscalar) channel
- Reconstruct proton and neutron observables from separate fits to the isovector and isoscalar form factors
- Perform fits with various cuts in M_π and Q^2 , as well as with different models for the lattice-spacing and finite-volume dependence, in order to estimate systematic uncertainties
- Large number of degrees of freedom \Rightarrow improved stability against lowering the Q^2 -cut
- Compute Zemach and Friar radii directly at physical point rather than on each ensemble

⁷ Bauer, Bernauer, and Scherer 2012 [PRC 86[, 065206\]](https://doi.org/10.1103/PhysRevC.86.065206).

[Lattice setup and form factor calculation](#page-4-0) [PRD 109[, 094510\]](https://doi.org/10.1103/PhysRevD.109.094510)

3 [Zemach and Friar radii from the lattice](#page-11-0) [PRD 110[, L011503\]](https://doi.org/10.1103/PhysRevD.110.L011503)

[Model average and final results](#page-16-0)

5 [Conclusions and outlook](#page-20-0)

Extrapolation of the form factors

- B_XPT including vector mesons only trustworthy for $Q^2 \lesssim 0.6$ GeV²
- Tail of the integrands suppressed (estimate see below)
- Extrapolate B χ PT fit results using a z -expansion 8 *ansatz*,

$$
G_E^{p,n}(Q^2) = \sum_{k=0}^{9} a_k^{p,n} z(Q^2)^k, \quad G_M^{p,n}(Q^2) = \sum_{k=0}^{9} b_k^{p,n} z(Q^2)^k,\tag{4}
$$

where

$$
z(Q^2) = \frac{\sqrt{\tau_{\text{cut}} + Q^2} - \sqrt{\tau_{\text{cut}} - \tau_0}}{\sqrt{\tau_{\text{cut}} + Q^2} + \sqrt{\tau_{\text{cut}} - \tau_0}}
$$
(5)

We fix G^p_{μ} $E^p(E(0)=a_0^p=1$ and $G_E^n(0)=a_0^n=0$, and use $\tau_{\rm cut}=4M_{\pi,\rm phys}^2$ and $\tau_0=0$

Incorporate large- Q^2 constraints on form factors 9 (4 sum rules for each form factor $^{10})$

 8 Hill and Paz 2010 [PRD 82[, 113005\]](https://doi.org/10.1103/PhysRevD.82.113005); 9 Lepage and Brodsky 1980 [PRD 22[, 2157\]](https://doi.org/10.1103/PhysRevD.22.2157); $^{\rm 10}$ Lee, Arrington, and Hill 2015 [PRD 92[, 013013\]](https://doi.org/10.1103/PhysRevD.92.013013).

Integration

• For integration, smoothly replace B_XPT parametrization of the form factors by z -expansion-based extrapolation $(\Delta Q^2_w=0.1$ GeV 2),

$$
F(Q^2) = \frac{1}{2} \left[1 - \tanh\left(\frac{Q^2 - Q_{\text{cut}}^2}{\Delta Q_w^2}\right) \right] F^\chi(Q^2) + \frac{1}{2} \left[1 + \tanh\left(\frac{Q^2 - Q_{\text{cut}}^2}{\Delta Q_w^2}\right) \right] F^z(Q^2),
$$
\nwhere $F(Q^2) \equiv G_E(Q^2) G_M(Q^2) / \mu_M$ for r_Z and $F(Q^2) \equiv G_E^2(Q^2)$ for $\langle r_E^3 \rangle_{(2)}$, resp.

\n(6)

Integration: integrands for the proton

• For integration, smoothly replace B_XPT parametrization of the form factors by z -expansion-based extrapolation $(\Delta Q_{w}^{2}=0.1$ GeV $^{2})$

Integration

• For integration, smoothly replace B_XPT parametrization of the form factors by z -expansion-based extrapolation $(\Delta Q^2_w=0.1$ GeV 2),

$$
F(Q^2) = \frac{1}{2} \left[1 - \tanh\left(\frac{Q^2 - Q_{\text{cut}}^2}{\Delta Q_w^2}\right) \right] F^\chi(Q^2) + \frac{1}{2} \left[1 + \tanh\left(\frac{Q^2 - Q_{\text{cut}}^2}{\Delta Q_w^2}\right) \right] F^z(Q^2),\tag{6}
$$

where $F(Q^2)\equiv G_E(Q^2)G_M(Q^2)/\mu_M$ for r_Z and $F(Q^2)\equiv G_E^2(Q^2)$ for $\braket{r_{E}^3}_{(2)},$ resp.

- Estimate contribution of the form factors at $Q^2 > Q^2_{\text{cut}}$ by setting $F^z(Q^2) \equiv 0$
- Contribution of FFs above 0.6 GeV 2 to $r^p_{\bar{Z}}$ $\frac{p}{Z}$ less than $0.9\,\%$, to $\langle r_{E}^2 \rangle_{(2)}^p$ less than $0.3\,\%$
- Cancellation between different terms of the integrand for $\langle r_{E}^3\rangle_{(2)}^{p}$ at small Q^2 does not occur at the required numerical accuracy on all bootstrap samples
- Regulate integral from $Q^2=0$ to $Q^2=0.01$ GeV 2 by replacing $t_0Q^2\rightarrow t_0Q^2+\epsilon$ in the denominator, $\epsilon = 1 \cdot 10^{-7} \Rightarrow$ change in $\langle r_E^3 \rangle_{(2)}^p$ by less than $0.06 \, \sigma$

[Lattice setup and form factor calculation](#page-4-0) [PRD 109[, 094510\]](https://doi.org/10.1103/PhysRevD.109.094510)

3 [Zemach and Friar radii from the lattice](#page-11-0) [PRD 110[, L011503\]](https://doi.org/10.1103/PhysRevD.110.L011503)

4 [Model average and final results](#page-16-0)

5 [Conclusions and outlook](#page-20-0)

Model average

Perform a weighted average over the results of all fit variations, using weights derived from the Akaike Information Criterion $^{\rm 11}$,

$$
w_i = \exp\left(-\frac{1}{2}\text{BAIC}_i\right) / \sum_j \exp\left(-\frac{1}{2}\text{BAIC}_j\right), \quad \text{BAIC}_i = \chi^2_{\text{noaug,min},i} + 2n_{f,i} + 2n_{c,i},\tag{7}
$$

where n_f is the number of fit parameters and n_c the number of cut data points

- Strongly prefers fits with low n_c , *i.e.*, the least stringent cut in $Q^2 \Rightarrow$ apply a flat weight over the different Q^2 -cuts to ensure strong influence of our low-momentum data
- Determine the final cumulative distribution function (CDF) from the weighted sum of the bootstrap distributions¹²
- \bullet Quote median of this CDF together with the central 68 $\%$ percentiles

 11 Akaike 1974 [\[IEEE Trans. Autom. Contr.](https://doi.org/10.1109/TAC.1974.1100705) 19, 716]; Neil and Sitison 2022 [\[arXiv:2208.14983\]](https://arxiv.org/abs/2208.14983); 12 Borsányi et al. 2021 [\[Nature](https://doi.org/10.1038/s41586-021-03418-1) 593, 51].

Results for Zemach radii and third Zemach moments

- $r^p_{\bar{Z}}$ Z^p : low value favored, but agrees within 2σ with most other determinations (except for dispersive analysis)
- $\langle r_{E}^{3} \rangle_{(2)}^{p}$: low value favored, good agreement with dispersive analysis, clear tension with A1
- \bullet Our estimates are \sim 86% and ∼ 97 %, respectively, correlated with electric proton radius
- Low results for $r^p_{\bar{z}}$ $\frac{p}{Z}$ and $\langle r_{E}^{3} \rangle_{\rm C}^{p}$ (2)

 \bullet Neutron results agree with *z*-expansion analysis of world *en*-scattering data, larger error

Correlations between different proton radii

Lattice results seem to confirm trends observed in data-driven evaluations

Miguel Salg (JGU Mainz) Proton radii for µ[H spectroscopy from lattice QCD](#page-0-0) LATTICE 2024, August 2, 2024 12

[Lattice setup and form factor calculation](#page-4-0) [PRD 109[, 094510\]](https://doi.org/10.1103/PhysRevD.109.094510)

3 [Zemach and Friar radii from the lattice](#page-11-0) [PRD 110[, L011503\]](https://doi.org/10.1103/PhysRevD.110.L011503)

[Model average and final results](#page-16-0)

5 [Conclusions and outlook](#page-20-0)

- Determination of Zemach and Friar radii of the proton and neutron from lattice QCD
- Based on calculation of the electromagnetic form factors which includes connected and disconnected contributions, as well as a full error budget
- Precision of proton radii sufficient to allow meaningful comparison to data-driven evaluations
- Small values for Zemach and Friar radii of the proton favored
- Large correlation with electromagnetic radii
- Good agreement with dispersive approaches for electric properties of the proton (electric and Friar radii), tension regarding its magnetic properties (magnetic and Zemach radii)
- Further investigations required, in particular for the proton's magnetic and Zemach radii
- Goal: complete and consistent picture of all electromagnetic properties of the nucleon

Backup slides

From correlation functions to form factors

- Average over the forward- and backward-propagating nucleon and over x-, y-, and z-polarization for the disconnected part
- **Calculate the ratios**

$$
R_{V_{\mu}}(\mathbf{q}; t_{\text{sep}}, t) = \frac{C_{3, V_{\mu}}(\mathbf{q}; t_{\text{sep}}, t)}{C_{2}(\mathbf{0}; t_{\text{sep}})} \sqrt{\frac{\bar{C}_{2}(\mathbf{q}; t_{\text{sep}} - t)C_{2}(\mathbf{0}; t)C_{2}(\mathbf{0}; t_{\text{sep}})}{C_{2}(\mathbf{0}; t_{\text{sep}} - t)\bar{C}_{2}(\mathbf{q}; t)\bar{C}_{2}(\mathbf{q}; t_{\text{sep}})}},
$$
(8)

$$
\text{where } t_{\rm sep}=y_0-x_0, \, t=z_0-x_0, \text{ and } \, \bar{C}_2(\mathfrak{q};t_{\rm sep})=\left.\textstyle\sum_{\tilde{\mathbf{q}}\in\mathfrak{q}}C_2(\tilde{\mathbf{q}};t_{\rm sep})\middle/\sum_{\tilde{\mathbf{q}}\in\mathfrak{q}}1\right.
$$

At zero sink momentum, the effective form factors can be computed from the ratios as

$$
G_E^{\text{eff}}(Q^2; t_{\text{sep}}, t) = \sqrt{\frac{2E_{\mathbf{q}}}{m + E_{\mathbf{q}}}} R_{V_0}(\mathbf{q}; t_{\text{sep}}, t), \tag{9}
$$

$$
G_M^{\text{eff}}(Q^2; t_{\text{sep}}, t) = \sqrt{2E_{\mathbf{q}}(m + E_{\mathbf{q}})} \frac{\sum_{j,k} \epsilon_{ijk} q_k \operatorname{Re} R_{V_j}^{\Gamma_i}(\mathbf{q}; t_{\text{sep}}, t)}{\sum_{j \neq i} q_j^2}
$$
(10)

E300 (M_n = 176 MeV, a = 0.049 fm)

Q^2 -dependence of the isovector form factors on E300

- Direct B_Y PT fit describes data very well
- Reduced error due to the inclusion of several ensembles in one fit

Q^2 -dependence of the isoscalar form factors on E300

Q^2 -dependence of the isovector form factors on E250

Q^2 -dependence of the isoscalar form factors on E250

Residuals of the $B\chi PT$ fits

Histograms

Q-Q plots

Integrands for the Zemach radius and third Zemach moment of the neutron

- B χ PT clearly not reliable for large Q^2
- z -expansion agrees well with B χ PT parametrization in region where it is fitted
- Scale the statistical variances of the individual fit results by a factor of $\lambda = 2$
- Repeat the model averaging procedure
- **•** Assumptions:
	- Above rescaling only affects the statistical error of the averaged result
	- Statistical and systematic errors add in quadrature
- Contributions of the statistical and systematic errors to the total error,

$$
\sigma_{\text{stat}}^2 = \frac{\sigma_{\text{scaled}}^2 - \sigma_{\text{orig}}^2}{\lambda - 1}, \qquad \sigma_{\text{syst}}^2 = \frac{\lambda \sigma_{\text{orig}}^2 - \sigma_{\text{scaled}}^2}{\lambda - 1} \tag{11}
$$

• Consistency check: results are almost independent of λ (if it is chosen not too small)

Correlations between different proton radii

 $\overline{1}$

 \bullet Estimate covariance matrix of model-averaged results for different proton radii r_i ,

$$
C_{jk} = \frac{1}{(\text{cdf}_{\mathcal{N}}^{-1}(3/4))^2} \text{med}([r_j - \text{med}(r_j)][r_k - \text{med}(r_k)]), \quad \text{corr}_{jk} = C_{jk} / \sqrt{C_{jj} C_{kk}} \tag{12}
$$

- Calculate median from model-averaged (empirical) CDF
- We obtain as correlation matrix of $[\sqrt{\langle r_{E}^{2}\rangle^{p}},\sqrt{\langle r_{M}^{2}\rangle^{p}},r_{Z}^{p}]$ $\frac{p}{Z}, r_F^p$ $_{F}^{p}],$

$$
\text{corr} = \begin{pmatrix} 1 & 0.41294995 & 0.85702489 & 0.97214447 \\ 0.41294995 & 1 & 0.72010978 & 0.42834371 \\ 0.85702489 & 0.72010978 & 1 & 0.79974042 \\ 0.97214447 & 0.42834371 & 0.79974042 & 1 \end{pmatrix}
$$

Approximate model-averaged distribution as multivariate Gaussian with above covariance matrix in vicinity of central values \rightarrow plot confidence ellipses

(13)