Hadronic vacuum polarization contribution to the muon g−2 **at short and long distances**

SIMON KUBERSKI FOR THE MAINZ LATTICE GROUP

July 29, 2024

Funded by the European Union

\overline{a} hvp μ FROM LATTICE QCD

Community goal

Several ab initio results at $< 0.5\%$ precision.

Use windows in the time-momentum representation to compute [\[Blum et al., 1801.07224\]](https://inspirehep.net/literature/1649231)

$$
a_\mu^{\rm hvp} = (a_\mu^{\rm hvp})^{\rm SD} + (a_\mu^{\rm hvp})^{\rm ID} + (a_\mu^{\rm hvp})^{\rm LD}
$$

[BNL g−2[, hep-ex/0602035\]](https://inspirehep.net/literature/710962) [FNAL g−2[, 2104.03281,](https://inspirehep.net/literature/1856627) [2308.06230\]](https://inspirehep.net/literature/2687002)

Community goal

Several ab initio results at $< 0.5\%$ precision.

Use windows in the time-momentum representation to compute [\[Blum et al., 1801.07224\]](https://inspirehep.net/literature/1649231)

$$
a_\mu^{\rm hvp} = (a_\mu^{\rm hvp})^{\rm SD} + (a_\mu^{\rm hvp})^{\rm ID} + (a_\mu^{\rm hvp})^{\rm LD}
$$

Community goal

Several ab initio results at $< 0.5\%$ precision.

Use windows in the time-momentum representation to compute [\[Blum et al., 1801.07224\]](https://inspirehep.net/literature/1649231)

 $a_\mu^{\rm hvp} = (a_\mu^{\rm hvp})^{\rm SD} + (a_\mu^{\rm hvp})^{\rm ID} + (a_\mu^{\rm hvp})^{\rm LD}$

 $▶$ Intermediate distance $(√)$: removes most systematics

Community goal

Several ab initio results at $< 0.5\%$ precision.

Use windows in the time-momentum representation to compute [\[Blum et al., 1801.07224\]](https://inspirehep.net/literature/1649231)

 $a_\mu^{\rm hvp} = (a_\mu^{\rm hvp})^{\rm SD} + (a_\mu^{\rm hvp})^{\rm ID} + (a_\mu^{\rm hvp})^{\rm LD}$

 $▶$ Intermediate distance $(√)$: removes most systematics

Community goal

Several ab initio results at $< 0.5\%$ precision.

Use windows in the time-momentum representation to compute [\[Blum et al., 1801.07224\]](https://inspirehep.net/literature/1649231)

 $a_\mu^{\rm hvp} = (a_\mu^{\rm hvp})^{\rm SD} + (a_\mu^{\rm hvp})^{\rm ID} + (a_\mu^{\rm hvp})^{\rm LD}$

- $▶$ Intermediate distance $(√)$: removes most systematics
- \triangleright Short distance (\checkmark , this talk): severe cutoff effects

Community goal

Several ab initio results at $< 0.5\%$ precision.

Use windows in the time-momentum representation to compute [\[Blum et al., 1801.07224\]](https://inspirehep.net/literature/1649231)

 $a_\mu^{\rm hvp} = (a_\mu^{\rm hvp})^{\rm SD} + (a_\mu^{\rm hvp})^{\rm ID} + (a_\mu^{\rm hvp})^{\rm LD}$

- $▶$ Intermediate distance $(√)$: removes most systematics
- \triangleright Short distance (\checkmark , this talk): severe cutoff effects
- \blacktriangleright Long distance $(\ldots,$ this talk): noise and finite-volume effects $1/16$

The Mainz/CLS setup

 $a_{\mu}^{\rm hvp}$ $_{\mu}^{\rm hvp}$ from $2+1$ [flavors](#page-7-0) **of** O(a) **[improved Wilson-clover fermions](#page-7-0)**

$2+1$ FLAVOR CLS ENSEMBLES

■ Six values of $a \in [0.039, 0.099]$ fm.

- Open boundary conditions in the temporal direction.
- $a\text{Tr}[M_{\rm q}]=2am_{\rm l}+am_{\rm s}=\text{const.}$ and $m_{\rm s} \approx m_{\rm s}^{\rm phys}$ to stabilize the strange-quark interpolation.

 \bullet New ensemble / \bullet significantly improved statistics since [\[Gérardin et al., 1904.03120\]](https://inspirehep.net/literature/1728554).

Generating a third ensemble with $m_\pi \approx m_\pi^{\text{phys}}$: F300 with 256×128^3 at 0.05 fm , \rightarrow increase precision and further constrain $(am_\pi)^2$ effects.

\Box O(a) improved correlation functions with

 \blacktriangleright local-local (LL) and local-conserved (LC) vector currents

 \triangleright two different lines of constant physics for the improvement (set 1/ set 2) that all differ by ${\rm O}(a^2).$

■ Finite-volume correction via spacelike [\[Hansen and Patella, 1904.10010,](https://inspirehep.net/literature/1730813) [2004.03935\]](https://inspirehep.net/literature/1790429) and timelike [\[Meyer, 1105.1892\]](https://inspirehep.net/literature/899092) [\[Lellouch and Lüscher, hep-lat/0003023\]](https://inspirehep.net/literature/525453) pion formfactor.

Scale setting via $t_0^{\rm phys}$ $_0^{\rm phys}$: uncertainty propagates significantly into $(a_{\mu}^{\rm hyp})^{\rm LD}.$

The short distance contribution

[\[SK et al., 2401.11895\]](#page-10-0)

\overline{a} hvp **AT SHORT DISTANCES**

Cutoff effects are the main concern at short distances, especially those of ${\rm O}(a^2 \log(a))$ [\[Della Morte et al., 0807.1120\]](https://inspirehep.net/literature/790136)[\[Cè et al., 2106.15293\]](https://inspirehep.net/literature/1871641) [\[Sommer et al., 2211.15750\]](https://inspirehep.net/literature/2605153):

 \blacktriangleright removal via perturbative QCD in the spacelike regime at high energies $Q^2.$

Starting from the well-known formula [\[Bernecker and Meyer, 1107.4388\]](https://inspirehep.net/literature/919588)

$$
(a_\mu^{\rm hvp})^{\rm SD} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty {\rm d}t \, w^{\rm SD}(t) \widetilde{K}(t) G(t) \,,
$$

with the short-distance window $w^{\mathrm{SD}}(t)$, we change to a modified QED kernel via

$$
w^{\text{SD}}(t)\tilde{K}(t) \to \text{K}_{\text{sub}}^{\text{SD}}(Q,t) = w^{\text{SD}}(t)\tilde{K}(t) - w^{\text{SD}}(0)\frac{16\pi^2 m_\mu^2}{9Q^2} f(Q,t)
$$

where $f(Q,t) = \frac{16}{Q^2} \sin^4\left(\frac{Qt}{4}\right)$ is the Kernel to compute

$$
\Pi(Q^2) - \Pi((Q/2)^2) = \int_0^\infty \mathrm{d}t \, f(Q,t)G(t).
$$

The regulated TMR kernel

Based on the Adler function $D(Q^2)$, we evaluate [\[Baikov et al., 0801.1821](https://inspirehep.net/literature/777276)[, 1001.3606\]](https://inspirehep.net/literature/843326),

$$
\Pi(Q^2) - \Pi((Q/2)^2) = \frac{\pi^2}{12} \int_{(Q/2)^2}^{Q^2} \frac{\mathrm{d}Q'^2}{Q'^2} D(Q'^2)
$$

and expect good convergence of the perturbative series [Jegerlehner, 2020].

$(a$ hvp μ) IN THE ISOVECTOR CHANNEL

■ Tiny uncertainties, benign chiral dependence, significant cutoff effects.

- Use tree-level improvement to reduce the cutoff effects.
- Combine with strange, disconnected, charm and valence connected isospin-breaking contributions for the full $(a_{\mu}^{\rm hvp})^{\rm SD}.$

Full result for (a_{μ}^{hvp}) hvp $)_{\rm 5D}^{\rm 5D}$

Stability under variation of the modification scale Q .

- Small but noticeable shift when $a^2\log(a)$ effects are not removed (1/ $Q=0$).
- **Final uncertainty dominated by systematics from the continuum limit.**

The long distance contribution

[Preliminary, blinded](#page-15-0)

The long distance contribution

Our goal

Determine with $(a_{\mu}^{\mathrm{hvp}})^{\mathrm{LD}}$ the last building block for the full $a_{\mu}^{\mathrm{hvp}}.$

- Noise reduction techniques to get to sub-percent precision for $I = 1$:
	- ▶ **Low-mode averaging** (LMA).
	- ▶ Spectral reconstruction.
- Finite-volume effects are sizable.
- Expect cutoff effects to be less relevant for Wilson quarks.
- Everything is **blinded**: Analyze multiple TMR kernels with
	- \blacktriangleright multiplicative offsets,
	- \blacktriangleright artificial cutoff effects,

$$
\blacktriangleright \ldots?
$$

Noise reduction: Low-mode averaging

Use low-mode averaging for all ensembles where $m_{\pi} < 280 \,\mathrm{MeV}$.

- ▶ Left: $m_{\pi} = 132 \,\text{MeV}$, $a = 0.064 \,\text{fm}$ (E250)
- Right: $m_{\pi} = 177 \text{ MeV}$, $a = 0.049 \text{ fm}$ (E300)

■ Autocorrelation becomes a limiting factor at fine lattice spacing.

Noise reduction: spectral reconstruction

Careful extraction of energies and overlaps: [\[Nolan Miller, Tue 16:15\]](https://conference.ippp.dur.ac.uk/event/1265/contributions/7445/)

- Spectral reconstruction of the isovector correlation function on E250 at $m_\pi^\text{phys}.$
- Solves the signal-to-noise problem, but LMA is more precise for $t < 2.5$ fm.
- Inclusion reduces the uncertainty on this ensemble by a factor of 2.

$(a$ hvp μ) IN THE ISOVECTOR CHANNEL: CHIRAL DEPENDENCE

■ Dependence of
$$
(a_{\mu}^{3,3})^{\text{LD}}
$$

on $\Phi_2 = 8t_0 m_{\pi}^2$.

- Data is corrected for finite-size effects.
- Weak dependence on the cutoff.
- Mass-dependent cutoff effects noticeable.

■ Chiral dependence well constrained across the range of pion masses. Need to include a term that is divergent in the chiral limit for good fit quality.

$(a$ hvp μ) IN THE ISOVECTOR CHANNEL: CUTOFF DEPENDENCE

- Dependence of $(a_\mu^{3,3})^{\text{LD}}$ on a^2 at physical quark masses.
- Four sets of data (colors) differ by $O(a^2)$.
- Each line represents a fit in the model average.
- Include terms à la $[\alpha_{\rm s}(1/a)]^{0.395} a^2$ [\[Husung, 2401.04303\]](https://inspirehep.net/literature/2744881).
- Contains **artificial cutoff effects from the blinding** procedure.
- Higher order cutoff effects have a small weight in the model average.

$(a$ hvp μ) IN THE ISOSCALAR CHANNEL

- Quark-disconnected diagram contributes significantly to noise in the isoscalar channel, despite using multiple noise reduction techniques [\[Cè et al., 2203.08676\]](https://inspirehep.net/literature/2053773).
- **B** Bounding method in the isoscalar channel to tame the long-distance tail.
- Leading finite-size effects of light-connected and disconnected cancel.

Finite-size correction: Consistency check

 $\circ I = 1$ channel $m_{\pi} = 286 \,\text{MeV}$ \circ L: 3 fm \rightarrow 4.1 fm \circ $m_{\pi}L: 4.4 \rightarrow 5.9$ $a = 0.064$ fm

■ Compare finite-size effects in the data with the two model predictions.

Excellent agreement (with large statistical uncertainties).

Achievements

- High statistical precision at m_π^phys and excellent control of the m_π dependence.
- Large span of lattice spacings to control the continuum extrapolation.

Challenges

- Scale setting remains a dominant source of uncertainty. The global status of gradient flow scales is unsatisfactory [\[FLAG23\]](http://flag.unibe.ch/2021/Scale%20setting).
- Autocorrelation hinders precise estimates at very fine lattice spacing.
- **Isospin breaking effects need to be computed accurately.** [\[Julian Parrino, Thu 9:40\]](https://conference.ippp.dur.ac.uk/event/1265/contributions/7439/) [\[Dominik Erb, Thu 10:00\]](https://conference.ippp.dur.ac.uk/event/1265/contributions/7437/)
- Stay tuned for our unblinded result for $(a_{\mu}^{\rm hvp})^{\rm LD}$!
- Related work of the Mainz group at Lattice 2024:
	- \blacktriangleright The timelike pion form factor and other applications of $I = 1\pi\pi$ scattering [\[Nolan Miller, Tue 16:15\]](https://conference.ippp.dur.ac.uk/event/1265/contributions/7445/)
	- \blacktriangleright The hadronic contribution to the running of α and the electroweak mixing angle [\[Alessandro Conigli, Thu 9:40\]](https://conference.ippp.dur.ac.uk/event/1265/contributions/7673/)
	- \blacktriangleright Machine-learning techniques as noise reduction strategies in lattice calculations of the muon $q - 2$ [\[Hartmut Wittig, Wed 11:35\]](https://conference.ippp.dur.ac.uk/event/1265/contributions/7450/)
	- ▶ UV-finite QED correction to the hadronic vacuum polarization contribution to $(q-2)_u$ [\[Julian Parrino, Thu 9:40\]](https://conference.ippp.dur.ac.uk/event/1265/contributions/7439/)
	- \triangleright The isospin-violating part of the hadronic vacuum polarisation [\[Dominik Erb, Thu 10:00\]](https://conference.ippp.dur.ac.uk/event/1265/contributions/7437/)