High precision calculation of hadronic vacuum polarisation contribution to muon g-2: update by BMW+DMZ collaboration

A.Yu. Kotov for the BMW+DMZ collaboration arXiv: 2407.10913

A. Boccaletti, Sz. Borsanyi, M. Davier, Z. Fodor, F. Frech, A. Gerardin, D. Giusti, A.Yu. Kotov, L. Lellouch, Th. Lippert, A. Lupo, B. Malaescu, S. Mutzel, A. Portelli, A. Risch, M. Sjo, F. Stokes, K.K. Szabo, B.C. Toth, G. Wang, Z. Zhang

Lattice 2024

Unblinding...

Auto layout updates disabled

Results

Results $a_{\mu}^{\text{LO-HVP}} = 714.1(2.2)(2.5)[3.3] \times 10^{-10}$

• 0.9σ difference w/experiment

Results $a_{\mu}^{\text{LO-HVP}} = 714.1(2.2)(2.5)[3.3] \times 10^{-10}$

- 0.9σ difference w/experiment
- 4.0σ higher then WP'20

H

Results'2 (intermediate distance)

Results'2 (intermediate distance) $a_{\mu}^{\text{LO-HVP,light}} = 206.57(25)(60)[65] \times 10^{-10}$

- FHM '23
- ETM '22

Results'2 (intermediate distance) $a_{\mu}^{\text{LO-HVP,light}} = 206.57(25)(60)[65] \times 10^{-10}$

- Light ID, BMW'24 vs R-ratio:
 - ~ $(4-5)\sigma$ tension

RBC '23 FHM '23 ETM '22

Results'2 (intermediate distance) $a_{\mu}^{\text{LO-HVP,light}} = 206.57(25)(60)[65] \times 10^{-10}$ $a_{\mu}^{\text{LO-HVP}} = 235.94(29)(63)[70] \times 10^{-10}$

- Light ID, BMW'24 vs R-ratio:
 - ~ $(4-5)\sigma$ tension
- Full ID, BMW'24:
 - KLOE: 5.7σ tension
 - BaBar: 3.1σ tension
 - CMD-3:1.0 σ tension
 - τ decays: 2.3σ tension

work		This work		
'23	Hermitt	BBC '23		
23	H-H	ETM '22		
22 - '22		Mainz '22		
n '22		BMW '20		
D '22	H = H			
er '20	H	BaBar	H-C	> #
V '20		CMD-3		╟╍
on '23 		KLOE	HoH	
& lattice		Tau		H-�-H
200	$\begin{array}{c c} 204 & 208 \\ \hline 10 \end{array}$		228	232
$a_{\mu,04-10}^{\text{LO-HVP,light}} \times$	10^{10}		$a_{\mu,04-10}^{\text{LO-RVP}} \times 10^{1}$.U

BMW: $2017 \rightarrow 2020 \rightarrow 2024$

Overall 40% error reduction since BMW'2020

- Continuum extrapolation: $a = 0.064 \text{fm} \rightarrow 0.048 \text{fm}$ [A.Risch, Thu, 10.40]
- Increased statistics

1.02 $\begin{array}{c} M_{ss}^2 w_0^2 / [M_{ss}^2 w_0^2]_{\rm phys} \\ 86.0 \\ 860 \\ 8$ Physical point $\beta = 3.7000 \ (1)$ Δ $\beta = 3.7500 \ (5)$ $\beta = 3.7753 \ (4)$ 0 $\beta = 3.8400 \ (4)$ ∇ $\beta = 3.9200$ (6) 0.94 $\beta = 4.0126$ (6) $\beta = 4.1479$ (2) 1.02 0.940.96 0.981.001.04 1.06 $M_{ll}^2 w_0^2 / [M_{ll}^2 w_0^2]_{\rm phys}$

- Continuum extrapolation: $a = 0.064 \text{fm} \rightarrow 0.048 \text{fm}$ [A.Risch, Thu, 10.40]
- Increased statistics
- Scale: high precision M_{Ω} data $\rightarrow w_{\Omega}$ [G.Wang, Fri, 15.55]

1.02 $\begin{array}{cc} M_{ss}^2 w_0^2 / [M_{ss}^2 w_0^2]_{\rm phys} \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.1 \end{array}$ Physical point $\beta = 3.7000 \ (1)$ $\beta = 3.7500 \ (5)$ $\beta = 3.7753 \ (4)$ \mathbf{O} $\beta = 3.8400 \ (4)$ $\beta = 3.9200$ (6) 0.94 $\beta = 4.0126$ (6) $\beta = 4.1479$ (2) 0.94 0.96 0.98 1.02 1.001.041.06 $M_{ll}^2 w_0^2 / [M_{ll}^2 w_0^2]_{\rm phys}$

- Continuum extrapolation: $a = 0.064 \text{fm} \rightarrow 0.048 \text{fm}$ [A.Risch, Thu, 10.40]
- **Increased statistics**
- Scale: high precision M_{Ω} data $\rightarrow w_0$ [G.Wang, Fri, 15.55]
- Analysis

1.02 $\begin{array}{cc} M_{ss}^2 w_0^2 / [M_{ss}^2 w_0^2]_{\rm phys} \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.1 \end{array}$ Physical point $\beta = 3.7000 \ (1)$ $\beta = 3.7500 \ (5)$ $\beta = 3.7753 \ (4)$ \mathbf{O} $\beta = 3.8400 \ (4)$ $\beta = 3.9200$ (6) 0.94 $\beta = 4.0126$ (6) $\beta = 4.1479$ (2) 0.94 0.96 0.98 1.02 1.041.001.06 $M_{ll}^2 w_0^2 / [M_{ll}^2 w_0^2]_{\rm phys}$

- Continuum extrapolation: $a = 0.064 \text{fm} \rightarrow 0.048 \text{fm}$ [A.Risch, Thu, 10.40]
- Increased statistics
- Scale: high precision M_{Ω} data $\rightarrow w_0$ [G.Wang, Fri, 15.55]
- Analysis
- Tail from data-driven approach
 [Poster, B.Toth]

- Continuum extrapolation: $a = 0.064 \text{fm} \rightarrow 0.048 \text{fm}$ [A.Risch, Thu, 10.40]
- Increased statistics
- Scale: high precision M_{Ω} data $\rightarrow w_0$ [G.Wang, Fri, 15.55]
- Analysis
- Tail from data-driven approach
- Finite size effects
 [Augo Mon 15 55]

[A.Lupo, Mon, 15.55]

Analysis More on windows $C(t) = -\frac{1}{3e^2} \sum_{\mu=1,2,3} \int d^3x \langle J_{\mu}(x,t) J_{\mu}(0,0) \rangle$ $a_{\mu}^{\text{LO}-\text{HVP}} = \alpha^2 \int_0^\infty dt K(tm_{\mu}) C(t)$ $a_{\mu}^{\text{LO-HVP,win}} = \alpha^2 \int_0^{\infty} dt K(tm_{\mu})C(t)w(t)$ [RBC/UKQCD'18]

Analysis **More on windows** $C(t) = -\frac{1}{3e^2} \sum_{\mu=1,2,3} \int d^3x \langle J_{\mu}(x,t) J_{\mu}(0,0) \rangle$ $a_{\mu}^{\text{LO-HVP}} = \alpha^2 \int_0^\infty dt K(tm_{\mu}) C(t)$ $a_{\mu}^{\text{LO-HVP,win}} = \alpha^2 \int_{0}^{\infty} dt K(tm_{\mu})C(t)w(t)$ [RBC/UKQCD'18]

Different windows: different behaviour

- Lattice • SD: 00 - 04 fm
- ID and LD: 04 28 fm

[Poster, B.Toth]

Analysis More on windows $C(t) = -\frac{1}{3e^2} \sum_{\mu=1,2,3} \int d^3x \langle J_{\mu}(x,t) J_{\mu}(0,0) \rangle$ $a_{\mu}^{\text{LO-HVP}} = \alpha^2 \int_0^\infty dt K(tm_{\mu}) C(t)$ $a_{\mu}^{\text{LO-HVP,win}} = \alpha^2 \int_{0}^{\infty} dt K(tm_{\mu})C(t)w(t)$ [RBC/UKQCD'18]

Different windows: different behaviour

- Lattice • SD: 00 - 04 fm
- ID and LD: 04 28 fm
- Tail: 28∞ fm

- [Poster, B.Toth]
- Data-driven approach

Analysis More on windows $C(t) = -\frac{1}{3e^2} \sum_{\mu=1,2,3} \int d^3x \langle J_{\mu}(x,t) J_{\mu}(0,0) \rangle$ $a_{\mu}^{\text{LO-HVP}} = \alpha^2 \int_0^\infty dt K(tm_{\mu}) C(t)$ $a_{\mu}^{\text{LO-HVP,win}} = \alpha^2 \int_{0}^{\infty} dt K(tm_{\mu})C(t)w(t)$ [RBC/UKQCD'18]

Different windows: different behaviour

- Lattice • SD: 00 - 04 fm
- ID and LD: 04 28 fm
- Tail: 28∞ fm

- [Poster, B.Toth]
- Data-driven approach

•
$$a_{\mu} = a_{\mu}^{00-04} + a_{\mu}^{04-28} + a_{\mu}^{28-\infty}$$

Short distance 00-04 window

- Contains $a^2 \log(a^2/w_0^2)$
- $\hat{q} = 2\sin(aq/2)/a$
- Tree-level corrected: $a_{\mu,00-04}^{\text{light}} \rightarrow a_{\mu,00-04}^{\text{light}} + a_{\mu,00-04}^{\text{tree}}(a=0) - a_{\mu,00-04}^{\text{tree}}(a)$

Intermediate distance 04-10 window

15-19 (Aubin et al.'22) window

[Poster, B.Toth]

$$a_{\mu,00-28}^{\text{light+disc}} = \frac{9}{10} a_{\mu,04-2}^{\text{light}}$$

[Poster, B.Toth]

 $a_{-28}^{I\approx0} + a_{\mu,04-28}^{I\approx0} + a_{\mu,00-04}^{\text{light}} + a_{\mu,00-04}^{\text{disc}}$

 $a_{\mu,04-06}^{\text{light}} + a_{\mu,06-12}^{\text{light}} + a_{\mu,12-28}^{\text{light}}$: Joint fit different windows \Leftrightarrow different functions

[Poster, B.Toth]

 $a_{\mu,00-28}^{\text{light+disc}} = \frac{9}{10} a_{\mu,04-28}^{\text{light}} + a_{\mu,04-28}^{I\approx0} + a_{\mu,00-04}^{\text{light}} + a_{\mu,00-04}^{\text{disc}}$

Tiny taste-breaking, FV effects

[Poster, B.Toth]

 $a_{\mu,00-28}^{\text{light+disc}} = \frac{9}{10} a_{\mu,04-28}^{\text{light}} + a_{\mu,04-28}^{I\approx0} + a_{\mu,00-04}^{\text{light}} + a_{\mu,00-04}^{\text{disc}}$

 $a_{u.04-06}^{\text{light}} + a_{u.06-12}^{\text{light}} + a_{u.12-28}^{\text{light}}$: Joint fit different windows \Leftrightarrow different functions

Tiny taste-breaking, FV effects

[Poster, B.Toth]

Contains $a^2 \log(a^2/w_0^2)$

[Cè et al., 2021]

 $a_{\mu,00-28}^{\text{light+disc}} = \frac{9}{10} a_{\mu,04-28}^{\text{light}} + a_{\mu,04-28}^{I\approx0} + a_{\mu,00-04}^{\text{light}} + a_{\mu,00-04}^{\text{disc}}$

 $a_{\mu,00-28}^{\text{light}} = 10^{\alpha} \mu,00-28 = 10^{\alpha} \mu,00-28$ $a_{\mu,04-06}^{\text{light}} + a_{\mu,06-12}^{\text{light}} + a_{\mu,12-28}^{\text{light}}$ is Joint fit different windows \Leftrightarrow different functions

Tiny taste-breaking, FV effects

[Poster, B.Toth]

Contains $a^2 \log(a^2/w_0^2)$

[Cè et al., 2021]

 $a_{\mu,00-28}^{\text{light+disc}} = \frac{9}{10} a_{\mu,04-28}^{\text{light}} + a_{\mu,04-28}^{I\approx0} + a_{\mu,00-04}^{\text{light}} + a_{\mu,00-04}^{\text{disc}}$

Less then 0.02

Input from data-driven analysis

BaBa	Ľ
CMD-	
KLOF	1
Tau	
Avg.	(
Avg.	(

[Poster, B.Toth]

Concluding remarks

- HVP contribution to muon g-2:
 - 4.6 ‰ precision
 - 0.9σ difference w/experiment
 - 4.0σ higher then WP'20
- ID window:
 - Agrees within all collaborations
 - Strong tension with data-driven results

