Checks on QED and strong-isospin breaking corrections to a_{μ}^{HVP}

Andreas Risch for the BMW collaboration arXiv: 2407.10913

A. Boccaletti, Sz. Borsanyi, M. Davier, Z. Fodor, F. Frech, A. Gerardin, D. Giusti, A.Yu. Kotov, L. Lellouch, Th. Lippert, A. Lupo, B. Malaescu, S. Mutzel, A. Portelli, A. Risch, M. Sjo, F. Stokes, K.K. Szabo, B.C. Toth, G. Wang, Z. Zhang

Thursday 1^{st} August, 2024

Talk by Alessandro Lupo, Mo 29.07., 03:55 PM, Quark and lepton flavour physics Poster by Balint Toth, Tue 30.07., 6:15 PM, Poster session Talk by Andrey Kotov, Wed 31.07., 11:55 AM, Quark and lepton flavour physics Talk by Gen Wang, Fri 02.08., 3:55 PM, Standard Model parameters

QCD_{iso} Ensembles: Landscape

$_{eta}$	$a [\mathrm{fm}]$	$L/a \times T/a$
3.7000	0.1315	48×64
3.7500	0.1191	56×96
3.7753	0.1116	56×84
3.8400	0.0952	64×96
3.9200	0.0787	80×128
4.0126	0.0640	96×144
4.1479	0.0483	128×192

Landscape of ensembles. Lattice spacings and volumes.

- ► Tree-level improved Symanzik gauge action¹, stout smeared² staggered fermion action ($n_{\text{step}} = 4$, $\rho = 0.125$)
- ▶ 2 + 1 + 1 dynamical quark flavours with $m_u = m_d = m_l$
- \blacktriangleright Ensembles with 7 lattice spacings from 0.1315 fm to 0.0483 fm
- Added finer lattice spacing with a = 0.0483 fm compared to previous work³

¹Luscher and Weisz 1985.

²Morningstar and Peardon 2004.

³Borsanyi 2021.

QCD_{iso} Ensembles: Landscape

Landscape of ensembles. Black point: isospin-symmetric physical point.

- \triangleright M_{qq}^2 mass of quark-connected pseudo-scalar meson⁴
- \blacktriangleright m_l and m_s scatter around physical point
- ▶ m_c from ratio⁵ $m_c/m_s = 11.85$ within one per-cent of FLAG value⁶

⁴Borsanyi 2013.

⁵McNeile et al. 2010.

⁶Aoki 2022.

QCD_{iso} Ensembles: Autocorrelation analysis

Normalised autocorrelation functions $\rho(\tau)$ and integrated autocorrelation times τ^{int} in units of configurations for the finest lattice with $\beta = 4.1479$

Autocorrelation analysis:

- ▶ Topological charge Q and energy density E evaluated at gradient flow time $t_{\rm f} = w_0^2$ corresponding to $r_{\rm smear} \approx 0.5 \,\rm{fm}$
- ▶ Ω -baryon 2-pt function $C(t \approx 1.5 \text{ fm})$ (plateau region of m_{eff}) for point and smeared sources
- ▶ $\tau^{\text{int}} \leq 10$ for considered observables
- \Rightarrow Jackknife resampling with 48 blocks, block length $B \approx 5 \cdot \tau_{\rm Q}^{\rm int}$ at $\beta = 4.1479$

QCD_{iso} Ensembles: Taste violations

Taste violations as a function of lattice spacing a for axial-vector A and tensor T tastes.

Lattice artefacts related to taste symmetry violations of staggered fermions:

- Masses of pions $M_{\pi}^2(\xi) = M_{ll}^2 + \Delta_{KS}(\xi)$ computed at average valence quark mass $\frac{1}{3}(2m_l + m_s)$, $\xi \in \{P, A, T, V, I\}$ sixteen meson tastes of the taste SU(4) group
- ► $M_{ll}^2 = M_{\pi}^2(P)$ squared mass of pseudo-Goldstone pion $\Rightarrow \Delta_{KS}(P) = 0$
- ▶ Taste violations decrease with approx. with a^4 , consistent with $\alpha_s^3 a^2$
- $M_{\pi}(T) \approx 142 \,\mathrm{MeV}$ at $\beta = 4.1479$

Physical point and isospin breaking decomposition

QCD+QED:

- ▶ Physical point defined by M_{π^0} , M_{K^0} , M_{K^+} , M_{Ω^-} , α
- ► Matching scheme: $\hat{M}^2 = \frac{1}{2}(M_{uu}^2 + M_{dd}^2), \Delta M^2 = M_{dd}^2 M_{uu}^2, M_{ss}^2, w_0, \alpha$

 ΔM^2 measure for strong isospin breaking

Matching scheme allows to decompose observables into isospin symmetric and isospin breaking contributions:

► For isospin breaking decomposition $[O]_{\text{phys}} = [O]_{\text{iso}} + [O]_{\text{qed}}$ study functional dependence of observable $O(\hat{M}w_0, M_{ss}w_0, \Delta M^2 w_0^2, e)$

► Physical value
$$[O]_{\text{phys}} = O\left([\hat{M}w_0]_{\text{phys}}, [M_{ss}w_0]_{\text{phys}}, [\Delta M^2 w_0^2]_{\text{phys}}, e\right)$$

- ► Isospin-symmetric contribution: $[O]_{iso} = O\left([\hat{M}w_0]_{phys}, [M_{ss}w_0]_{phys}, 0, 0\right)$
- ► Pure QCD contribution: $[O]_{qcd} = O\left([\hat{M}w_0]_{phys}, [M_{ss}w_0]_{phys}, [\Delta M^2 w_0^2]_{phys}, 0\right).$
- ▶ Strong isospin breaking contribution $[O]_{sib} = [O]_{qcd} [O]_{iso}$
- ▶ Electromagnetic contribution: $[O]_{qed} = [O]_{phys} [O]_{qcd}$

Physical values of $M_{\rm uu}$, $M_{\rm dd}$, $M_{\rm ss}$ and w_0

► In partially-quenched χPT + photons⁷: $\hat{M}^2 = \frac{1}{2}(M_{uu}^2 + M_{dd}^2) = M_{\pi^0}^2 + NLO$ in IB

 $[\hat{M}]_{\rm phys} = 134.9768(5)$ MeV.

▶ Physical values of meson masses⁸:

 $[\Delta M^2]_{\rm phys} = 13170(320)(270)[420] \text{ MeV}^2$ $[M_{ss}]_{\rm phys} = 689.89(28)(40)[49] \text{ MeV}$

• Update on gradient-flow scale w_0 adding the 0.048 fm lattice spacing :

 $[w_0]_{\rm phys} = 0.17245(22)(46)[51] \,\,{\rm fm}$

More details \rightarrow Talk by Gen Wang, Friday 02.08., 3:55 PM, BSM Session

⁷Bijnens and Danielsson 2007.

⁸Borsanyi 2021.

Matching scheme ambiguity: Kaon mass decomposition

$$\begin{split} & [M_{K^{0/+}}]_{\rm iso} = 494.55(31)~{\rm MeV} \\ & [M_{K^0}]_{\rm sib} = +2.98(14)~{\rm MeV} \\ & [M_{K^0}]_{\rm qed} = 0.05(7)~{\rm MeV} \\ & [M_{K^+}]_{\rm sib} = -3.13(17)~{\rm MeV} \\ & [M_{K^+}]_{\rm qed} = 2.25(8)~{\rm MeV} \end{split}$$

Decomposition of the neutral and charged kaon masses in three different schemes.

Decomposition in the $\{M_{uu}, M_{dd}, M_{ss}, w_0\}$ scheme.

Agreement on decomposition of M_K indicates equivalence of schemes ($\Delta M_{\pi} \propto \alpha$ at LO):

- This work⁹: $\{M_{uu}, M_{dd}, M_{ss}, w_0\}$
- ► Gasser-Rusetsky-Scimemi (GRS) scheme¹⁰: { m_u, m_d, m_s, α_s } in $\overline{\text{MS}}$ at $\mu = 2 \text{ GeV}$

 Cottingham-formula based decomposition¹¹: Relates electromagnetic self-energy to forward Compton tensor

 \Rightarrow Good agreement with GRS and Cottingham-formula based schemes

⁹Borsanyi 2021.

¹⁰Di Carlo et al. 2019.

¹¹Stamen et al. 2022.

Verification of IB contributions: Previous setup

Computation of strong-isospin breaking (SIB) and the valence QED contributions to a_{μ}^{light} :

$$\begin{split} [a_{\mu}^{\text{light}}]'_{m} &\equiv m_{l} \left. \frac{\partial [a_{\mu}^{\text{light}}]}{\partial \, \delta m} \right|_{\delta m=0} \\ [a_{\mu}^{\text{light}}]''_{20} &\equiv \frac{1}{2} \frac{\partial^{2} [a_{\mu}^{\text{light}}]}{\partial e_{v}^{2}} \Big|_{e_{v}=0} \end{split}$$

$$\begin{split} \delta m &\equiv m_d - m_u \\ m_l &\equiv \frac{1}{2} \left(m_u + m_d \right) \\ e_v \text{ charge of valence quarks} \end{split}$$

Previous setup¹² based on chiral extrapolation:

- Measurements at valence quark mass $\kappa \cdot m_l$ with $\kappa = 3, 5, 7, 9, 11$
- Linear chiral extrapolation to $\kappa = 1$ based on $\kappa = 3, 5, 7$

Extrapolation procedure for $[a_{\mu}^{\rm light}]'_m$ and $[a_{\mu}^{\rm light}]''_{20}$ for $\beta=3.7000$

¹²Borsanyi 2021.

Verification of IB contributions: Light connected SIB

Comparison between $[a_{\mu}^{\text{light}}]'_{m}$ based on chiral extrapolation and LMA

Computation of $[a_{\mu}^{\text{light}}]'_{m}$ with exact mass derivative:

- ▶ Previous work¹³: Chiral extrapolation
- ▶ Now: Low Mode Averaging (LMA) technique at $\kappa = 1$

 \Rightarrow New computation confirms previous results

¹³Borsanyi 2021.

Isospin breaking effects: Light connected valence QED

 $[a_{\mu}^{\text{light}}]_{20}^{\prime\prime}$ on a single configuration at $a = 0.0787 \,\text{fm}$ as function of the upper limit of integration t_c .

Computation of $[a_{\mu}^{\text{light}}]_{20}^{"}$ based on discrete derivative $(e_v = +\frac{1}{3}e, 0, -\frac{1}{3}e)$:

- Previous work¹⁴: Chiral extrapolation
- ▶ Now: Low-mode averaging (LMA) at $\kappa = 1$

 \Rightarrow Checked extrapolation procedure on single QCD and QED configuration at $a=0.0787\,{\rm fm}$

¹⁴Borsanyi 2021.

Verification of IB contributions: Disconnected SIB

Comparison between standard stochastic estimator and FSE of SIB to $(a_{\mu}^{\text{disc}})_{\text{sib}}$.

Computation of $(a_{\mu}^{\text{disc}})_{\text{sib}}$:

- ▶ Previous work¹⁵: Discrete derivative $(1.0 \cdot m_l \text{ and } 0.9 \cdot m_l)$ with 3000 random source vectors
- ▶ Now: Exact mass derivative, one-end trick (split-even estimator)¹⁶ with 128 random source vectors
- \Rightarrow Comparable results at reduced cost

¹⁵Borsanyi 2021.

¹⁶Boucaud 2008.

Summary

- ▶ Update of previous work¹⁷
- ▶ Added two ensembles with lattice spacing $a = 0.0483 \,\text{fm}$
- Autocorrelation analysis
- ▶ Isospin breaking decomposition of M_K consistent with GRS and Cottingham formula based schemes ⇒ strong indicator of equivalence of schemes (at current level of precision)
- Improved and verified computation of leading isospin breaking corrections to a_{μ}^{HVP}

 $^{^{17}\}mathrm{Borsanyi}$ 2021.

References I

Y. Aoki et al. "FLAG Review 2021". In: *Eur. Phys. J. C* 82.10 (2022), p. 869. DOI: 10.1140/epjc/s10052-022-10536-1. arXiv: 2111.09849 [hep-lat].

Johan Bijnens and Niclas Danielsson. "Electromagnetic Corrections in Partially Quenched Chiral Perturbation Theory". In: *Phys. Rev. D* 75 (2007), p. 014505. DOI: 10.1103/PhysRevD.75.014505. arXiv: hep-lat/0610127.

Sz. Borsanyi et al. "Isospin splittings in the light baryon octet from lattice QCD and QED". In: *Phys. Rev. Lett.* 111.25 (2013), p. 252001. DOI: 10.1103/PhysRevLett.111.252001. arXiv: 1306.2287 [hep-lat].

Sz. Borsanyi et al. "Leading hadronic contribution to the muon magnetic moment from lattice QCD". In: *Nature* 593.7857 (2021), pp. 51–55. DOI: 10.1038/s41586-021-03418-1. arXiv: 2002.12347 [hep-lat].

Philippe Boucaud et al. "Dynamical Twisted Mass Fermions with Light Quarks: Simulation and Analysis Details". In: Comput. Phys. Commun. 179 (2008), pp. 695–715. DOI: 10.1016/j.cpc.2008.06.013. arXiv: 0803.0224 [hep-lat].

M. Di Carlo et al. "Light-meson leptonic decay rates in lattice QCD+QED". In: *Phys. Rev. D* 100.3 (2019), p. 034514. DOI: 10.1103/PhysRevD.100.034514. arXiv: 1904.08731 [hep-lat].

M. Luscher and P. Weisz. "On-shell improved lattice gauge theories". In: Commun. Math. Phys. 98.3 (1985). [Erratum: Commun.Math.Phys. 98, 433 (1985)], p. 433. DOI: 10.1007/BF01205792.

- C. McNeile et al. "High-Precision c and b Masses, and QCD Coupling from Current-Current Correlators in Lattice and Continuum QCD". In: *Phys. Rev. D* 82 (2010), p. 034512. DOI: 10.1103/PhysRevD.82.034512. arXiv: 1004.4285 [hep-lat].
- Colin Morningstar and Mike J. Peardon. "Analytic smearing of SU(3) link variables in lattice QCD". In: *Phys. Rev. D* 69 (2004), p. 054501. DOI: 10.1103/PhysRevD.69.054501. arXiv: hep-lat/0311018.
 - Dominik Stamen et al. "Kaon electromagnetic form factors in dispersion theory". In: Eur. Phys. J. C 82.5 (2022), p. 432. DOI: 10.1140/epjc/s10052-022-10348-3. arXiv: 2202.11106 [hep-ph].