

The connected isospin-violating part of the hadronic vacuum polarisation

<u>Dominik Erb</u>

Volodymyr Biloshytskyi, Antoine Gerardin, Franziska Hagelstein, Harvey Meyer, Julian Parrino, Vladimir Pascalutsa

1st August 2024

QED Corrections to the HVP

$$a_{\mu}^{HVP,NLO} = -\frac{e^2}{2} \int_{x,y,z} H_{\lambda\sigma}(z) \delta_{\mu\nu} \left[G(x-y) \right]_{\Lambda} \langle j_{\lambda}(z) j_{\mu}(x) j_{\nu}(y) j_{\sigma}(0) \rangle + c.t.$$
(1)

Covariant coordinate-space (CCS) kernel: $H_{\lambda\sigma}^{TL}(z) = \left(-\delta_{\lambda\sigma} + 4\frac{z_{\lambda}z_{\sigma}}{z^2}\right)H_2(|z|)$ Pauli-Villars (PV) regulated photon propagator: $[G(y)]_{\Lambda} = \frac{1}{4\pi^2|y|^2} - \frac{\Lambda\kappa_1(\Lambda|y|)}{2\sqrt{2}\pi^2|y|} + \frac{\Lambda\kappa_1(\Lambda|y|)}{4\pi^2|y|}$

The connected isospin-violating Part

$$a_{\mu}^{HVP,NLO,38} = -\frac{e^2}{2} \int_{x,y,z} H_{\lambda\sigma}(z) \delta_{\mu\nu} \left[G(x-y) \right]_{\Lambda} \langle j_{\lambda}^3(z) j_{\mu}^{em}(x) j_{\nu}^{em}(y) j_{\sigma}^8(0) \rangle + c.t.$$
(2)

 $j^3_\mu(z)$: Isovector current, $j^8_\mu(z)$: Isoscalar current

$$\langle j_{\lambda}^{3}(z) j_{\mu}^{em}(x) j_{\nu}^{em}(y) j_{\sigma}^{8}(0) \rangle = -2\mathcal{Q} \operatorname{Re}\left[2\operatorname{Tr}\left(\sqrt{O}^{N} \right) + \operatorname{Tr}\left(\sqrt{Q}^{N} \right) \right]$$
(3)
$$c.t. = -\frac{\Delta m_{K}^{em} - \Delta m_{K}^{phys}}{\langle K^{+} | \bar{u}u - \bar{d}d | K^{+} \rangle} \frac{\partial a_{\mu}^{HVP}}{\partial m_{I}}$$
(4)

Here the charge factor $\mathcal{Q}=1/36$ and $\Delta m_{\mathcal{K}}^{phys}=-3.934$ MeV

All calculations are done at the SU(3) symmetric point \rightarrow For final result only (2+2)a diagram needs to be added

	N300	N202	H200	B450	H101
β	3.70	3.55	3.55	3.46	3.40
size	$48^{3} \cdot 128$	$48^{3} \cdot 128$	32 ³ · 96	$32^{3} \cdot 64$	$32^{3} \cdot 96$
a (fm)	0.04981	0.06426	0.06426	0.07634	0.08636
m_{π} (MeV)	(MeV) 421(5) 42	412(5)	416(5)	417(5)	416(4)
$m_{\pi}L$	5.1	6.4	4.3	5.2	5.8
L (fm)	2.4	3.1	2.1	2.4	2.8

Overview over Calculations

Connected LbL Contribution

- Crosscheck with QED
- QCD Calculations
- The Counterterm
 - The Kaon Mass Splitting with a PV Cutoff Λ
 - Computational Strategy
 - Large PV-mass Behavior
 - Light-quark mass Derivative of the Kaon Mass and HVP
- Continuum/ PV-mass Extrapolation of $a_{\mu}^{HVP,NLO,38}$ (connected Part)

Connected LbL Contribution

$$-\frac{e^2}{2}\int_{x,y,z} H_{\lambda\sigma}(z)\delta_{\mu\nu}\left[G(x-y)\right]_{\Lambda}\langle j_{\lambda}^3(z)j_{\mu}^{em}(x)j_{\nu}^{em}(y)j_{\sigma}^8(0)\rangle$$

1st August 2024

(5)

Crosscheck with QED

Fit function: $f_{fit}(\mathbf{a}) = b + c \cdot \mathbf{a} + d \cdot \mathbf{a}^2 + e \cdot \mathbf{a}^3$, PV-mass: $\Lambda = 3 \cdot m_{\mu}$

Table: The values are given in units of 10^{-11} . The expected value is -7.5 $\cdot 10^{-11}$.

	XIZI	XcZl	XIZc	XcZc
Total	-6.90	-7.36	-7.44	-7.56

QCD Calculation

Fit function: $f_{fit}(\mathbf{a}, m_{\pi}L) = b + c \cdot \mathbf{a}^2 + d \cdot e^{-\frac{m_{\pi}L}{2}}$, PV-mass: $\Lambda = 16 \cdot m_{\mu}$

Continuum values from fit:		
Self-Energy:2-l $(-0.63 \pm 0.19) \cdot 10^{-11}$ (0.	Loop: .99 \pm 0.13) \cdot 10 $^{-11}$	Total: $(-0.25 \pm 0.33) \cdot 10^{-11}$

(Counterterm)

$$\Delta m_{K}^{em}(\Lambda) = (m_{K^+} - m_{K^0})(\Lambda)$$

At SU(3) point only two diagrams contribute:

Known analytic large distance (elastic) behavior \rightarrow Use lattice data only for short distance part

Computational Strategy

- 1. Compute diagrams for different source-sink separation times
- 2. Restrict lattice data to short distance part
- 3. Extrapolate to infinite separation times and zero lattice spacing
- 4. Add long-distance part using the kaon e.m. form factor
- 5. Repeat for different PV-masses $(\Lambda/m_{\mu} \in [3, 5, 8, 10, 16, 20, 32, 50, 64])$

(Counterterm)

Large PV-Mass Behavior

2.252.0

1.25

0.750.50.25

Use Operator Product Expansion [2209.02149] to predict divergent terms for $\Lambda \to \infty$:

$$(m_{K^+} - m_{K^0})_{QED}(\Lambda) \approx \frac{3\alpha}{2\pi} \log\left(\frac{\Lambda}{\mu_{IR}}\right) (Q_u^2 - Q_d^2) m_l \frac{\partial m_K}{\partial m_l}$$
(8)

$$\underbrace{\frac{1.06\ 2.11\ 3.17\ 4.23\ 5.28\ 6.34}{\mu_{IR}} = \mathcal{C} \log\left(\frac{\Lambda}{\mu_{IR}}\right), \ \mathcal{C} \approx 0.12 \text{ MeV}$$

Fit function:

$$f_{fit}(\Lambda) = a \cdot \frac{\Lambda}{\Lambda + d} + C \cdot \log(\frac{\Lambda + b}{b})$$
 (9)

Reproduces expected behavior for $\Lambda \to \infty$ and $\Lambda \to 0$ Average χ^2 of 0.055

Fig. 7.a) PV-mass extrapolation

 Λ in m_{μ}

1st August 2024

10 20 30 40 50 60 Light-quark mass Derivative of the Kaon Mass and HVP

Fig. 8.a) HVP mass insertion

$$\frac{\partial a_{\mu}^{HVP}}{\partial m_{l}} = \left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} dx_{t} \ w(x_{t}) G(x_{t})$$

With the TMR kernel $w(x_t)$

This calculation uses stochastic wall sources

Fig. 9.a) Kaon propagator mass insertion

Get matrix element $\langle K^+ | \bar{u}u - \bar{d}d | K^+ \rangle$ with constant fit method

LO ChPT prediction: $m_l \langle K^+ | \bar{u}u - \bar{d}d | K^+ \rangle \approx \frac{m_\pi^2}{4m_K} \approx 104 \text{ MeV}$ Lattice result: (102 ± 1) MeV

(Counterterm)

Continuum/ PV-Mass Extrapolation of $a_{\mu}^{HVP,NLO,38}$ (connected Part)

Summary and Outlook

Complete SU(3) Calculation:

Outlook:

- H200 lattice for other PV-masses
- Additional (bigger) PV-mass
- Additional (smaller) lattice spacing
- Going to the physical point

Additional Slides

	N300	N202	H200	B450	H101
β	3.70	3.55	3.55	3.46	3.40
size	$48^3 \cdot 128$	$48^3 \cdot 128$	$32^{3} \cdot 96$	32 ³ · 64	$32^{3} \cdot 96$
a (fm)	0.04981	0.06426	0.06426	0.07634	0.08636
a $(1/\text{GeV})$	0.252	0.326	0.326	0.390	0.438
m_{π} (MeV)	421(5)	412(5)	416(5)	417(5)	416(4)
$m_{\pi}L$	5.1	6.4	4.3	5.2	5.8
L (fm)	2.4	3.1	2.1	2.4	2.8

 $16 \cdot m_\mu \cdot a_{H101} = 0.736$

Difference between Elastic Part and Lattice Data

Kaon mass splitting values

٨	Lattice part in MeV	$I(t_c, \Lambda)$ in MeV	Total in MeV
3	0.128 ± 0.014	0.1174	0.363 ± 0.014
5	0.266 ± 0.027	0.1355	0.537 ± 0.027
8	0.465 ± 0.046	0.1430	0.751 ± 0.046
10	0.575 ± 0.055	0.1443	0.864 ± 0.055
16	0.841 ± 0.081	0.1450	1.131 ± 0.081
20	0.965 ± 0.094	0.1450	1.255 ± 0.094
32	1.260 ± 0.131	0.1450	1.550 ± 0.131
50	1.584 ± 0.169	0.1450	1.874 ± 0.169
64	1.842 ± 0.200	0.1450	2.132 ± 0.200

$$V_{\mu}(x)V_{
u}(0)\sim rac{1}{|x|^6}+rac{\mathcal{O}_3}{|x|^3}+rac{\mathcal{O}_4}{|x|^2}+\dots$$

- First term irrelevant for this kind of correlator
- Second term only appears because of lattice
- > Third term is first relevant term for continuum value

$$\int d^3\vec{x} \, V_{\mu}(x_0,\vec{x}) V_{\nu}(0) \cdot \delta_{\mu,\nu} G_{\Lambda}(x_0,\vec{x}) \stackrel{x_0 \to 0}{\to} C_1 - C_2 \ln(x_0)$$

Kaon Mass Insertion

Variance composition of $a_{\mu}^{HVP,NLO,38}$

