

Strong isospin breaking correction to HVP for the muon g-2

Jake Sitison Fermilab Lattice, HPQCD, MILC Collaboration 2024 Lattice Conference

Acknowledgements

Fermilab Lattice and MILC

- Alexei Bazavov
- Pietro Butti
- David Clarke
- Carleton DeTar
- Aida El-Khadra
- Elvira Gámiz
- Steven Gottlieb
- Anthony Grebe
- Leon Hostetler
- William Jay
- Hwancheol Jeong

- Andreas Kronfeld
- Shaun Lahert
- Michael Lynch
- Andrew Lytle
- Ethan Neil
- Curtis Peterson
- James Simone
- Jacob Sitison
- Ruth Van de Water
- Alejandro Vaquero
- Shuhei Yamamoto

HPQCD

- Christine Davies
- Peter Lepage

- Craig McNeile
- Gaurav Ray

Computing Resources

- ACCESS
- ALCC
- Dirac
- ERCAP
- INCITE

- Indiana U
- LRAC
- USQCD
- XSEDE

Strong-Isospin Breaking

$$\begin{aligned} a^{\text{HVP,LO}}_{\mu} = &a^{ll}_{\mu}(\text{conn.}) + a^{ss}_{\mu}(\text{conn.}) + a^{cc}_{\mu}(\text{conn.}) + \dots \\ &+ a^{lsc...}_{\mu}(\text{disc.}) + \boxed{\Delta a^{ud}_{\mu}(\text{SIB})} + \Delta a^{ud}_{\mu}(\text{QED}) \\ \Delta a^{ud}_{\mu}(\text{SIB}) = &a^{ud}_{\mu} - a^{ll}_{\mu} = \frac{4a^{uu}_{\mu} + a^{dd}_{\mu}}{5} - a^{ll}_{\mu} \\ &= \Delta a^{ud}_{\mu}(\text{SIB}, \text{conn.}) + \Delta a^{ud}_{\mu}(\text{SIB}, \text{disc.}) \end{aligned}$$

2

(Blinded) data

$$a_{\mu}^{(W/SD),\text{blind}} = \begin{cases} \alpha^{W/SD,\text{disc.}} a_{\mu}^{W/SD}, & \text{disc.} \\ \alpha^{W/SD,\text{conn.}} a_{\mu}^{W/SD} + \beta, & \text{conn.} \end{cases}$$

Disconnected continuum fit

W:	[0.4,	1]	fm
----	-------	----	----

 $\Delta a_{\mu}^{ud}(\boldsymbol{a}, \{M_A\}) = \Delta a_{\mu}^{ud, \text{cont.}} (1 + \boldsymbol{F}^{\text{disc}}(\boldsymbol{a}) + \boldsymbol{F}^{M}(\{M_A\}))$

$$F^{
m disc}(a) = \sum_{j=1}^n c_j (a\Lambda)^{2j} lpha_s^{\delta_{ij}
u}$$

$$F^{M}(\{M_{A}\}) = C_{\text{sea}} \sum_{A=\pi,K} \delta M_{A}^{2}$$
$$\delta M_{A}^{2} = \frac{M_{A, \text{ phys.}}^{2} - M_{A, \text{ latt.}}^{2}}{M_{A, \text{ phys.}}^{2}}$$

Dependence	Variations		
a^2	$n = 0, 1, 2^*$		
$lpha_s$	$a^2 \alpha_s^{ u}, \nu = 0, 1, 2$		
F^M	With and without		
Data subsets	$a \in [0.09, 0.15], [0.09, 0.12],$		
	$[0.012, 0.15] \mathrm{fm}$		
*Only fits with sufficient DoF included			

- Model-based corrections (FV, M_π, TB) cancel exactly
- Coarse data subset to inflate systematic error

 $\Lambda = 900~{\rm MeV}$

Disconnected continuum fit

W:	[0.4,	1]	fm
----	-------	----	----

 $\Delta a_{\mu}^{ud}(\boldsymbol{a}, \{M_A\}) = \Delta a_{\mu}^{ud, \text{cont.}} (1 + \boldsymbol{F}^{\text{disc}}(\boldsymbol{a}) + \boldsymbol{F}^{M}(\{M_A\}))$

$$F^{
m disc}(a) = \sum_{j=1}^n c_j (a\Lambda)^{2j} lpha_s^{\delta_{ij}
u}$$

$$F^{M}(\{M_{A}\}) = C_{\text{sea}} \sum_{A=\pi,K} \delta M_{A}^{2}$$

 $\delta M_{A}^{2} = rac{M_{A, \, \text{phys.}}^{2} - M_{A, \, \text{latt}}^{2}}{M_{A, \, \text{phys.}}^{2}}$

Dependence	Variations		
a^2	$n = 0, 1, 2^*$		
$lpha_s$	$a^2lpha_s^ u, u=0,1,2$		
F^M	With and without		
Data subsets	$a \in [0.09, 0.15], [0.09, 0.12],$		
	$[0.012, 0.15] \mathrm{fm}$		
*Only fits with sufficient DoF included			

- Model-based corrections (FV, M_π, TB) cancel exactly
- Coarse data subset to inflate systematic error

Differences for SD: [0, 0.4] fm

- α_s : LO discretization effect is a^2 in SD
- a^2 : $a^2 \log a$ variations included

 $\Lambda = 900 \text{ MeV}$

Disconnected BMA analysis

Connected chiral continuum fit

W: [0.4, 1] fm

$$egin{aligned} a_{\mu}(a,M_{\pi},\{M_{A}\}) &= a_{\mu}(a,M_{\pi})(1+F^{M}(\{M_{A}\})), \ a_{\mu}(a,M_{\pi}) &= \sum_{i=-1}^{1}c_{i}(a)(M_{\pi}/\Lambda)^{2i} \ c_{i}(a) &= \sum_{j=0}^{n_{i}}c_{ij}(a\Lambda)^{2j}lpha_{s}^{\delta_{1j}
u} \end{aligned}$$

$$\Lambda=650~{\rm MeV}$$

Dependence	Variations		
M_π^2	$\{M_{\pi}^{-2}, \log M_{\pi}^2, 0, M_{\pi}^4\} + M_{\pi}^0 + M_{\pi}^2$		
a^2	$n = [0, 0, 0], \dots, [2, 3, 2]^*$		
$lpha_s$	$a^2 \alpha_s^{\nu}, \nu = 0, 1, 2$		
F^M	With and without		
FV	CM, χ PT (NLO,NNLO), HP		
Data subsets	$a \in [0.06, 0.15], [0.06, 0.12], [0.09, 0.15] \text{ fm}$		
*Only fits with sufficient DoF included			

• TB corrections have negligible effect on continuum results

Connected chiral continuum fit

W: [0.4, 1] fm

$$egin{aligned} a_{\mu}(a,M_{\pi},\{M_{A}\}) &= a_{\mu}(a,M_{\pi})(1+F^{M}(\{M_{A}\})) \ a_{\mu}(a,M_{\pi}) &= \sum_{i=-1}^{1}c_{i}(a)(M_{\pi}/\Lambda)^{2i} \ c_{i}(a) &= \sum_{j=0}^{n_{i}}c_{ij}(a\Lambda)^{2j}lpha_{s}^{\delta_{1j}
u} \end{aligned}$$

 $\Lambda = 650~{\rm MeV}$

Dependence	Variations		
M_π^2	$\{M_{\pi}^{-2}, \log M_{\pi}^2, 0, M_{\pi}^4\} + M_{\pi}^0 + M_{\pi}^2$		
a^2	$n = [0, 0, 0], \dots, [2, 3, 2]^*$		
$lpha_s$	$a^2 \alpha_s^{\nu}, \ \nu = 0, 1, 2$		
F^M	With and without		
FV	CM, χ PT (NLO,NNLO), HP		
Data subsets	$a \in [0.06, 0.15], [0.06, 0.12], [0.09, 0.15] $ fm		
*Only fits with sufficient DoF included			

• TB corrections have negligible effect on continuum results

Differences for SD: [0, 0.4] fm

- M_{π}^2 : M_{π}^{-2} destabilizes fits
- α_s : LO discretization effect is a^2 in SD
- FV: EFT model error expected to be larger than FV correction in SD

FV corrections

W: [0.4, 1] fm

- Expected behavior shown
 - Decreasing with V
 - Decreasing with M_{π}
- χ PT (NLO, NNLO) and HP agree
- CM generally less aggressive
 - Still sub-percent difference in correction to a_{μ}
 - Contributes to systematic error

Connected BMA analysis

(Blinded) results and error budget

$10^{10} \Lambda a^{ud}$ (SIB)	W		SD			
(Blinded & Proliminary)	conn.	disc.	conn.	disc.		
(Binded & Freminiary)	0.71(8)(13)[15]	-0.17(5)(4)[6]	-0.029(19)(56)[59]	0.013(10)(18)[21]		
Stat. Syst. Total						
$\sigma_{\Delta a_{\mu}^{ud}}/a_{\mu}^{ll}(\text{conn.})$ (%)	V	V	SI	SD		
(Blinded & Preliminary)	conn.	disc.	conn.	disc.		
Statistics	0.037	0.014	0.010	0.011		
Scale setting w_0 (fm)	0.001	0.002	0.004	0.002		
Scale setting w_0/a	0.001	~ 0	0.001	~ 0		
Current renormalization (Z_V)	0.013	~ 0	0.035	~ 0		
Finite-volume correction $(\Delta_{\rm FV})$	0.054					
Remainder (cont. extrap.)	0.036	0.027	0.113	0.040		
Total	0.076%	0.031%	0.119%	0.041%		
		$10^{10}a^{ll}_{\mu}(\text{conn})$	n.)			
	W conn.	~ 200				
	SD conn.	~ 50		9		

Comparison to previous results on W: [0.4, 1] fm

No previous SD specific results

Conclusions

$10^{10} \Lambda_a ud(SIB)$	W		SD	
(Blinded & Preliminary)	conn.	disc.	conn.	disc.
(Diffided & Treminiary)	0.71(8)(13)[15]	-0.17(5)(4)[6]	-0.029(19)(56)[59]	0.013(10)(18)[21]

Backup slides

Disconnected BMA breakdown

Connected BMA breakdown

Error budget procedure

- Statistical, scale setting (w0, w0/a), and current renormalization (Zv) as in windows paper, e.g., $\sigma_{a_{\mu}}^{2}(\text{stat}) = \sum_{i=1}^{N_{M}} \sigma_{a_{\mu},i}^{2}(\text{stat}) \text{pr}(M_{i} | \{y\})$
- Finite volume is variance of center values (approximate, assumes each model has similar weight):

$$\sigma_{a_{\mu}}^{2}(\mathrm{FV}) = \frac{1}{N_{FV}} \sum_{j=1}^{N_{FV}} \left(\langle a_{\mu} \rangle_{j} - \langle a_{\mu} \rangle_{\mathrm{BMA}} \right)^{2}$$

• The remainder of the error comes from (chiral) continuum fit (up to coupling with the aforementioned sources). It is the difference of the errors above from the total in quadrature.

Physical masses

Pure QCD mesons (Antonin Portelli):

$$\begin{array}{ll} \text{(isospin-broken} \\ \text{pure-QCD} \Rightarrow \\ \text{world)} \end{array} \begin{cases} f_{\pi^+} &= 130.50 \text{ MeV}, \\ M_{\pi^+} &= 134.977 \text{ MeV}, \\ M_{K^+} &= 491.405 \text{ MeV}, \\ M_{K^0} &= 497.567 \text{ MeV}, \\ M_{D_s} &= 1967.02 \text{ MeV}. \end{array} \qquad \begin{array}{ll} M_{\pi^{ls}} = M_{\pi^+} = 134.977 \text{ MeV} \\ M_{\pi^{ls}} = \sqrt{(M_{K^+}^2 + M_{K^0}^2)/2} = 494.496 \text{ MeV} \\ \end{array}$$

Pion masses (GMOR):

$$m_u/m_d = 0.4529(48)_{\text{stat}} \left(\frac{+150}{-67}\right)_{\text{syst}} \text{ arXiv:1807.05556 (MILC)}$$

$$M_\pi^{uu} = M_{\pi^+} \sqrt{\frac{2}{1 + m_d/m_u}} = 106.7(1.1) \text{ MeV}$$

$$M_\pi^{dd} = M_{\pi^+} \sqrt{\frac{2}{1 + m_u/m_d}} = 158.3(0.8) \text{ MeV}$$
16