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Motivation

> Luscher formalism is widely used for extraction of 2-to-2
scattering amplitudes from finite-volume energies

» formalism breaks down at energies near/on left-hand
cuts in partial-wave-projected amplitudes, as seen in

« AA [Green, Hanlon et al. '21] arXiv 2103.01054

o DD% (relevant for TCC(3875)Jr (cciid) tetraquark)
'Padmanath, Prelovsek '22] arXiv 2202.10110
Du, Filin, Baru et al. '23] arXiv 2303.09441
.. many talks at Lattice 2023 and 2024

> |left-hand cuts in the projected amplitudes due to light
meson exchanges

> extension of standard formalism needed for resolving
these issues



Amplitude and partial-wave projection

» We focused on the case of identical particles, e.g. NN scattering

> General structure of the amplitude at fixed CM scattering angle:

« right-hand 2-particle cut above NN threshold and 3-particle cut above NN threshold

e sub-threshold poles due to single exchanges and lower left-hand cuts due to multiple exchanges

subthreshold regime = elastic regime
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Amplitude and partial-wave projection

1
> Projecting to definite angular momentum ./\/l(s, Hcm) — ./\/le(S) — 5 /d cOS Ocm PB(COS 9cm) M(S, Hcm)

\
Legendre polynomial
.. Sub-threshold poles become the nearest left-hand cut
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Luscher formalism breakdown
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Luscher formalism breakdown
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Luscher formalism breakdown
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Luscher quantisation condition:

[Green Hanlon et al. 21] arX|v 2103 01054



Other approaches to the left-hand cut problem

» Use a plane-wave basis (no projection to angular momentum) [Meng, Epelbaum "21]

» HAL QCD method [Lyu et al. '23] (see Sinya Aoki's talk just before)

» Apply the 3-particle RFT formalism [Hansen et al. '24] — applied to DDr system (talk by Sebastian M. Dawid
on Monday)

» NREFT-based approach [Bubna et al. '24] (see the next talk by Akaki Rusetski)



Finite-volume analysis

» focus on two-nucleon elastic scattering NN — NN N N N
as model system which includes a left-hand cut \/

> use generic, EFT-independent, all-orders diagrammatic = - --c---
expansion in periodic cubic finite volume

» considered a “skeleton expansion” for a finite-volume correlation function...

has poles at the FV energies =333

.. and track the volume dependence of the different building blocks to derive a QC



Adapted quantisation condition

Revisiting derivation step-by-step, we derive the following modified QC for identical spinless particles:

used to constrain F°%(P) from the

- det [S(P, L)'+ ¢TK " (P)

kcmfm finite-volume spectrum
[ABR, Hansen 23] arXiv 231118793
/
k/ glm/ k/ glm/ kcm g/m/
cm cm (1 1 1 o )
1 tm|| & b (P)
kcmtm Skcmfm,kémé’m’(P) kcmtm ﬁcmemakémglm/ ]'
ke || 1
F°5(P) matrix
loop summand matrix S r-exchange matrix modified “K-matrix”

(known functions) (known off-shell logs) g — NNr effective coupling
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Adapted quantisation condition

Revisiting derivation step-by-step, we derive the following modified QC for identical spinless particles:

used to constrain F°%(P) from the
finite-volume spectrum

e.g. S-wave result

. 1 | 2w (kem)wn (kL) + 2|keml k| — 2M% + M2 — ic
/ p— O
kcmfm Thoemtm k! 0/m! em00-ken00 ™ 1 e [ | 5 2w (kem)wn (kL) — 2|kem|[khm| — 2M2 + M2 — e

C

r-exchange matrix
(known off-shell logs)
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Adapted quantisation condition

Revisiting derivation step-by-step, we derive the following modified QC for identical spinless particles:

- det [S(P, L)~ + K (P)

—

used to constrain F°%(P) from the
finite-volume spectrum

» separates the “physical ingredients™ #°%(P) contains all short-range physics
I is the single 7-exchange

~ extended index space k_.Cm, k.. ¢'m’ (reminiscent of three-particle formalisms)

> inclusion of spin straightforward: index space expanded to include spin state labels
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Extracting the amplitude

An extra step is needed to connect K-bar to the amplitude:
E

- E,(L) _ |
~h r:_:-———:‘{> ‘ C_—_‘_’—_f{> ‘
- Ey(L) o ~ | ~
finite-volume quantization K-bar matrix integral amplitude
spectrum condition equations

.. we need to solve integral equations:

[ M T

MauxP7 ] / :ICTP, ] AN
(P p,p’) (Pp:p') 2 ) (2m)? 4WN(kcm)[(k8rs§1)2_kgm+i€]

K7 (P,p,p) =K (P,p,p)+2¢°T(P,p,p)

‘ + 2 solve for auxiliary amplitude

symmetrize to get amplitude
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Quantisation condition in the £ basis

We can obtain the condition in an alternative form, purely in the £m basis:

det K>(P)'+FT(P, L)

[ABR, Hansen ‘23] arXiv 2311.18793

finite-volume T _ 1
PR L) =85 M a7 (P)s(P D)

function:

g’r

k

-m» K. indices still present internally

» more similarin form to standard Luscher QC
> cah use usual irrep projection technology

» finite-volume function is trickier to evaluate
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Quantisation condition in the £ basis

We can obtain the condition in an alternative form, purely in the £m basis:

——0S

det (K (P '+ F7(P,L)| =0

.. Can be rewritten in many ways, e.g. .
o K& y(P)becomes standard K-matrixas g — 0

(when we turn off the 7 exchanges)

« F(P,L)isthe standard Luscher finite-volume
function (up to kinematic factor)

det [/EO(P)—l + F(P, L)+ AFT (P, L)} — 0

AFT(P,L) = FT(P,L) — ¢S(P, L)¢!

e ] / Bk AT Yo (kem) Y (Kem) [Kem|“TE H (Kem)
(

RolPYZ= KA IR) Tt (P) = 50 | s =008 (kg — (e

15



Exchanges in momentum-only basis

1
1+ 29T (P)S(P, L)

FT(P,L)=¢S(P, L) ¢t

~ blocks and re-sum over angular momentum

I can shuffle factors between internal building

1 Vi
1+ 2¢2T(P,L)S(P,L) ™

Fg;njg/m/ (P, L) — ng S(P7 L)

exchange recovers exact pole form

. - /
matrix in k., k.., space

_ 14 ) T k! (P, L) —
Yem b = VAT [Rem| Ve (em) - henki (n (kem) — w3y (k) = (e — Kl)? — M2 + i

similarities with plane-wave basis approach suggested in [Meng, Epelbaum '21], but QC is still in £ basis

-)» may improve convergence of the finite-volume function to work in this basis (numerical tests needed)
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Simplification of the integral equations

« We can show that there is a direct algebraic relation between F°% and the infinite-volume amplitude:

M(P) = D(P) — Dt (P) | —os—— DR, (P)

K(P) +DP) |, o

(sum over repeated indices)

where & (P) solves the auxiliary integral equation:

1 /d%cm D(P,p, k) 2¢2T (P, k,p) e*((kn)" —kcm)

2 @m)* dwn(kem) [(k&)? = ke + i
— + = + 1 4+ +

with on-shell external momenta, and the objects D", DR, D are obtained from it

-———— similar to ladder equation in 3-particle formalisms, can profit from the progress in solving this type of
mtegral equation e.g. [Romero-Lopez et al. 19], [Jackura et al. '21], [Dawid et al. ‘23]
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Simplification of the integral equations

This suggests a more direct approach for finding the amplitude, (partially) bypassing the integral equations

. use algebraic relation

amplltude

=~ E5(L)

= Ly(L) \ D

=~ Ly(L)

finite-volume guantization

" K-bar matrix
spectrum condition

18



Summary

 we have presented relativistic guantisation conditions that
apply on the nearest left-hand cut, extending the validity
of the standard Luscher condition

det [S(P,L)" '+ &£TK " (P)64+2¢2T] =0

« QCs were introduced in both a mixed momentum and kemtm
angular-momentum basis and angular-momentum-only
basis %et [KOS(P)—l 4 FT(R L)} _ 0
™m

« the formalism applies in moving frames and has been
extended to nonidentical particles and arbitrary spins

o different strategies have been proposed to extract
amplitudes from intermediate K-matrices, including
integral equations and a direct algebraic relation

19



Outlook

« numerical testing of the formalism and consistency check
with three-particle RFT formalism is underway

o extension to multichannel systems

e formal clarification of connections to three-particle
formalisms (e.g. this method as a limiting case?)

« comparison with alternative approaches

20




Thank you for your attention!

Any questions?
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Introductory details

Theoretical setup:

® generic low-energy EFT with “nucleons” N and
lighter “pions” 7 (masses M, and M)

® N and 7 with arbitrary spins

® generic interactions, including NNr vertex with
coupling g

22

Finite volume setup:

® periodic cubic spatial volume of side L, finite time
extent T

o L large enough to neglect © (e™"+") effects

x ~E(L)
discretized momenta discretized spectrum

spatial loop
momenta summed



Finite-volume scattering formalism

E

—E5(L) N o
What we want from a finite-volume ’ « lnﬁnlte-vo.lume
scattering formalism: spectrum E(L) scattering
_Ey(L) N N  amplitude

Consider finite-volume correlator — has poles at the finite-volume energy levels

[Kim, Sachrajda, Sharpe 2005]

| * . A\ 7~ all other diagrams which
Bethe-Salpeter kernel | | — X+ —FI—F + \—|—M + + -+ are 2-particle irreducible

in the s-channel

dressed N propagator —@— — —— —C— -+
S—— 1-particle irreducible diagrams
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The standard derivation

e -

2-particle loops lead
to O (L_”) effects

other fv loops can be replaced by iv

A loops up to O (e_MﬂL) corrections

[Lischer 1986]

[Kim, Sachrajda, Sharpe 2005]

infinite-volume
correlator

_ i
CrL(P)=Cx(P)+ A(P) FP.L)-1 1 K(P) A(P)
- - — operator
infinite-volume loop | matrix of known functions ~ K-matrix  “overlaps’’
® intermediate two-particle (NVN) +
state dominates —————— -
® left and right functions set to  det [F(P, L)_l T K(P)} = 0 at fv energy levels |

on-shell kinematics | Lischer quantization condition

=— = == ——— —_— — — =
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The standard derivation

e -

2-particle loops lead
to O (L_”) effects

other fv loops can be replaced by iv

A loops up to O (e_MﬂL) corrections

[Lischer 1986]
[Kim, Sachrajda, Sharpe 2005]

N 7
—

® placing BS kernels on shell introduces singularities
and left-hand cuts below threshold — not present in
the correlator

infinite-volume loop
® intermediate two-particle (NN) |

“*”'“- T e ® cut near threshold arises from the 7 exchanges shown
~~1ett and right functions set fo ™

_on-shell kinematics
B — ———————— T ———

—_——— — —

¢ invalidates next steps in derivation
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Proposed formalism o - @

We propose the following instead:

dangerous 7 exchanges are never put

/ fully on shell, only the safe kernels B

remainder . endcap vectors
_ A ¢ T A(PT
CrL(P)=ZI(P)+ A(P)¢ S(P.L)1 1 €K (P)E + 2g2T(P) ETA(P)

v

det [S(P, L) + EK(P)e + 26°T(P

\
|
|

| momenta at finite-volume energy levels

= & N &
R S =

keep the sum over

key step modified quantization condition
5 b : : ® quantities in QC live in angular momentum plus discrete spatial
momentum index space: k*¢m:k* ¢'m' with k. k' € 2=73/L

split BS kernel: remove 7 exchanges ® determinant taken over this full space
(similarity to 3-particle RFT formalism [Hansen, Sharpe 2014])

e
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Quantization condition

constrains the K-bar #(P) (and coupling g)
from the finite-volume spectrum

~det [S (P, L)

[ _

—

* 1 47 Yy, k Y. k) Spwrre [R5 1M H (K regulator function
® S-cut matrix: Siextm k' erms (P L) = ST ( 4Z} e( )([( 1)14 k (]L*)‘] H(E")
N o
on-shell CM momentum magnitude (k})* = s/4 — My,

k Kk

¢ T matrix: partial wave projections of partially off-shell t-channel diagram

off e off

1 (sz(k*)wN(k’*) +olRH||K| — 2M2 + M2 — e
2k 1K™ 0 \ 2wy (K )wn (k) — 2|k* ||k — 2M2 + M2 — ic

e.g. Swave: T i« (P) =
o Trivial projectors &, £7: ¢ =1

e % (P) matrix: matrix in AM index space, projections of a Lorentz scalar #(s)

Particles with nonzero spin taken into account by incorporating spin state indices into the
above quantities.
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