

Update on the isospin breaking corrections to the HVP with C-periodic boundary conditions

Letizia Parato

August 1, 2024

ETH Zürich

LATTICE 2024

Anian Altherr, *Lucius Bushnaq, Isabel Campos-Plasencia, *Marco Catillo, Alessandro Cotellucci, *Madeleine Dale, Alessandro De Santis, *Patrick Fritzsch, Roman Gruber, Tim Harris, Javad Komijani, Giacomo La Scala, *Jens Luecke, Marina Marinkovic, Francesca Margari, *Sofie Martins, Letizia Parato, Agostino Patella, Gaurav Ray, Sara Rosso, Nazario Tantalo, Paola Tavella

Ear, Phys. J. C (2020) 40:195 https://doi.org/10.1146/opjo.010852-020-5617-3	THE EUROPEAN PHYSICAL JOURNAL C
Special Article - Tools for Experiment and Theory	
openQ*D code: a versatile tool for (QCD+QED simulations
10701 collaboration	
habel Campos ¹ , Patrick Fritzsch ^{2,4} 0, Martin Hansen ¹ , M Alberto Ramos ⁴ , Nazario Tantalo ¹⁴	larina Kratic Marinkovic ¹ , Agostino Patella ¹ ,
Industrial Printer de Cambres and D.C.A.C.S., Jona, et De Cambres Theoretical Printer Department, DEN (21) General Sciences Annual 2019; Novieme di Ter Yuppin, Yu della Riserea Insendiari I, 00031 3 School of Mathematics, Trairio (Coling Dubles, Dubles 2, Ireland 3 Institut für Physik and IEE Adireched, Nanisheld Universität or Beel 9 Dipartmento di Fluica, Università di Roma Ter Vergan, Nia della Ho- 2000 Colingui et Statuto et Sciences and Sciences Annual 2010 Colingui et Sciences and Sciences Adireched Colorescenti et al 2010 Colingui et Sciences and Sciences and Sciences Advances 2010 Colingui et al 2010 Colingui et al 2010 Colingui et al 2010 Colingui et al 2010 Colingui et al 2010 Colingui et al 2010 2010 Colingui et al 2010 2010 Colingui et al 2010 Colingui et al 20	san, zwano samanone, spaan Janue, Baly n, Zoan Granaw Wanilaanal 6, 12009 Berlin, Genmany mus Scientifica L. (H133 Borne, haly
Rossived: 12 Supember 2019 / Accepted: 6 January 2020 0 The Author(s) 2020	
Alternal: We prove the spectra pulsage experiments (pd): CMC hyperbolic data says (1) and the spectra pulsage and the spectra (pd): CMC hyperbolic data says (1) and the spectra pulsage and the spectra (pd): CMC hyperbolic data says (1) and the spectra pulsage and the spectra (pd): CMC hyperbolic data (2) and the spectra pulsage and the spectra (pd): CMC hyperbolic data (2) and the spectra pulsage and the spectra (pd): CMC hyperbolic data (2) and the spectra pulsage and the spectra (pd): CMC hard (pd) and the spectra (pd) and the spectra (pd): CMC hard (pd) and (pd) and (pd) and (pd) and (pd) (pd) and (pd) and (pd) (pd) (pd) (pd) (pd) (pd) (pd) (pd	13 Use gala for de fanceia (CCH-GID an- shafer popura incl.) 13.1 Corpella antinanza for una popura 13.1 Corpella antinanza for una popura 14.1 Coloretta antinanza este antinanza 14.1 Coloretta antinanza este antinanza 14.1 Coloretta antinanza este antinanza 14.1 Coloretta antinanza este antinanza 14.1 Coloretta antinanza este antinanza 15.1 Coloretta antinanza este antinanza es

Motivations

Subpercent precision predictions hadronic quantities in lattice QCD must include

- $m_d \neq m_u$, as $\mathcal{O}((m_d m_u)/\Lambda_{QCD}) \sim 1\%$
- QED effects, as $\mathcal{O}(\alpha_{EM}) \sim 1\%$
- dynamical charm quark, ...

RC* program: focus on the IB corrections (masses of mesons, HVP, leptonic decays) (see arXiv:1509.01636, arXiv:1908.11673 arXiv:2209.13183v1)

Goal of this (preliminary) analysis: Cross-check and compare two approaches to compute IB effects at fixed lattice spacing and volume:

- 1. Direct QCD+QED with dynamical U(1) and $m_u \neq m_d$
- 2. IsoQCD + RM123 (arXiv:1303.4896): perturbative expansion in δm_{ud} and α_{QED} , including all sea effects¹

 $^{^1}$ This is the plan, all ingredients available. However, in this talk, no valence-disconnected or sea IB effect included.

Comparing two methods for calculating Isospin Breaking Effects

Target observable: HVP contribution to $(g - 2)_{\mu}$.

Setup: QCD and QCD+QED gauge ensembles with Wilson fermions, O(a) improved action with coeff. $c_{sw}^{SU(3)} = 2.18859$ and $c_{sw}^{U(1)} = 1$, same volume and β , but different κ_q and α

ensemble	lattice	β	α	κ_{μ}	$\kappa_d = \kappa_s$	κ _c
A400a00b324	$64 imes 32^3$	3.24	0	0.13440733	0.13440733	0.12784
A380a07b324	64×32^3	3.24	0.007299	0.13459164	0.13444333	0.12806355
		$\delta\beta$	$\delta \alpha$	δm_u	$\delta m_d = \delta m_s$	δm_c
$\delta \vec{\epsilon} = \epsilon^{A380} - \epsilon^{A}$	400	0	0.007299	-0.00509422	-0.000996117	-0.00682735

(ensembles described in arXiv:2209.13183v1)

 $\label{eq:Steps: Steps: } \begin{cases} \mbox{Compute all relevant observables at "LO"} \\ \mbox{Compute derivatives: } \partial G/\partial m_f, \, \partial G/\partial e^2, \, \partial \phi_i/\partial m_f, \, \partial \phi_i/\partial e^2 \mbox{ and derivatives to } Z_V \\ \mbox{Combine } \delta \vec{\epsilon} \equiv (\delta \beta, \delta \alpha, \delta m_u, \delta m_d/s, \delta m_c) \mbox{ and derivatives to get IB effects to } a^{\rm HVP}_{\mu} \end{cases}$

Ensembles' setup

C-periodic (or C^{*}) boundary conditions

Local prescription for QED in a finite box w/ C-periodic BCs in spatial directions

$$A_{\mu}(x + L_i\hat{i}) = -A_{\mu}(x), \quad U_{\mu}(x + L_i\hat{i}) = U_{\mu}^*(x)$$

$$\psi(\mathbf{x}+L_i\hat{\mathbf{i}})=C^{-1}\bar{\psi}(\mathbf{x})^T,\quad \overline{\psi}(\mathbf{x}+L_i\hat{\mathbf{i}})=-\psi^T(\mathbf{x})C$$

- The lattice is doubled in the $\hat{1}$ direction: $L_1 = 2L$, while $L_k = L$ for k = 2, 3.
- C^* BCs in other directions: $\psi(x + L_k \hat{k}) = \psi(x + \frac{L_1}{2}\hat{1})$ for k = 2, 3
- Effective periodicity of $2L \rightarrow$ double sized Dirac operator w.r.t. PBCs
- ⊕ Only odd Matsubara modes → charged-states propagation allowed
- ⊕ Suppressed FV effects for meson masses and HVP w.r.t. to QED_L arXiv:1509.01636 arXiv:2212.09565
- \ominus Weak violation of flavor conservation (disappears as $V \rightarrow \infty$)

Lines of constant physics

Observable	Physical value	Target RC* value	Most sensitive bare parameter
$\sqrt{8t_0}$	0.415 fm*	0.415 fm	g_0^2
$\phi_0 = 8t_0(m_{K^\pm}^2 - m_{\pi^\pm}^2)$	0.992	0	$m_s - m_d$
$\phi_1 = 8t_0(m_{K^{\pm}}^2 + m_{\pi^{\pm}}^2 + m_{K^0}^2)$	2.26	2.11	$m_u + m_d + m_s$
$\phi_2 = 8t_0(m_{K^0}^2 - m_{K^\pm}^2)/\alpha_R$	2.36	2.36, <mark>0</mark>	$m_u - m_d$
$\phi_3 = \sqrt{8t_0}(m_{D_a^{\pm}} + m_{D^0} + m_{D^{\pm}})$	12.0	12.1	m _c
$lpha_R$	0.007297	(0, α^{phys})	e ²

*arXiv:1608.08900

Scheme described in arXiv:2209.13183v1

	A400 [MeV]	A380 [MeV]
$M_{\kappa\pm}$	398.5(4.7)	383.6(4.4)
$M_{\pi^{\pm}}$	398.5(4.7)	383.6(4.4)
M_{κ^0}	398.5(4.7)	390.7(3.7)
$M_{D_s}^{\pm}$	1912.7(5.7)	1926.4(7.8)
$M_{D^{\pm}}$	1912.7(5.7)	1926.4(7.8)
M_{D^0}	1912.7(5.7)	1921.1(7.6)

Computing mass parameters shifts δm_f

Alternatively, mass shifts can be derived by matching ${\tt IsoQCD+RM123}$ and ${\tt QCD+QED}$ schemes

$$\phi_i^{\text{A400a00b324}+\text{RM123}} = \phi_i^{\text{A380a07b324}}, \quad i = 0, 1, 2, 3$$

LHS evaluated by expanding ϕ_i in isospin-breaking parameters $\delta m_f, e^2, \delta \beta = 0$, with target values as in previous slide:

$$\begin{split} \phi_{0} &\stackrel{!}{=} \phi_{0}^{(0)} = 0 \\ \phi_{1} &\stackrel{!}{=} \phi_{1}^{(0)} + 16t_{0}^{(0)}m_{\pi\pm}^{(0)} \left[\left(\sum_{f=d,s} \delta m_{f} \frac{\partial m_{K}0}{\partial m_{f}} + e^{2} \frac{\partial m_{K}0}{\partial e} \right) + 2 \left(\sum_{f=u,d} \delta m_{f} \frac{\partial m_{\pi\pm}}{\partial m_{f}} + e^{2} \frac{\partial m_{\pi\pm}}{\partial e} \right) \right] \\ \phi_{2} &\stackrel{!}{=} \phi_{2}^{(0)} + 8t_{0}^{(0)} \frac{2m_{K}^{(0)}}{\alpha} \left[\left(\sum_{f=d,s} \delta m_{f} \frac{\partial m_{K}0}{\partial m_{f}} + e^{2} \frac{\partial m_{K}0}{\partial e} \right) - \left(\sum_{f=u,s} \delta m_{f} \frac{\partial m_{K\pm}}{\partial m_{f}} + e^{2} \frac{\partial m_{K\pm}}{\partial e} \right) \right] \\ \phi_{3} &\stackrel{!}{=} \phi_{3}^{(0)} + \sqrt{8t_{0}^{(0)}} \left[\left(\sum_{f=u,c} \delta m_{f} \frac{\partial m_{D}0}{\partial m_{f}} + e^{2} \frac{\partial m_{D}0}{\partial e} \right) + 2 \left(\sum_{f=d,c} \delta m_{f} \frac{\partial m_{D\pm}}{\partial m_{f}} + e^{2} \frac{\partial m_{D\pm}}{\partial e} \right) \right] \end{split}$$

$$\Rightarrow \begin{cases} \delta m_u &= -0.005100(59)_{stat}(10)_{syst}, \\ \delta m_d &= \delta m_s &= -0.00114(58)_{stat}(10)_{syst}, \\ \delta m_c &= -0.00591(89)_{stat}(4)_{syst}. \end{cases}$$

RM123: Feynman diagrams with our action and vector currents

Diagrams for leading IB effects (connected valence only here)

Derivatives from O(a) improved Wilson action $S^{\text{QCD+QED+SW}} = S_f(e, m_f) + S_{\text{SW}}(e) + \delta Sb$ exchange tadpole self-energy mass $\begin{array}{l} \propto \sum_{x} \bar{\psi}(x)\psi(x) \\ \propto \sum_{x,\mu} \mathcal{T}_{\mu}(x)A_{\mu}^{2}(x) \\ \propto \sum_{x,\mu} \mathcal{V}_{\mu}^{c}(x)A_{\mu}(x) \\ \propto c_{\mathrm{SW}}^{U(1)} \sum_{x,\mu} \delta_{e} D_{\mathrm{SW}}(x) \end{array}$ from δ_m of mass term $(4 + m)\bar{\psi}\psi$ in S_f , from δ_e^2 of kinetic term T(x) in S_f , from δ_e of kinetic term T(x) in S_f , or from $S_{SW} = S_{SW}|_{e=0} + e \cdot \delta_e S_{SW} + O(e^3)$.

With $G^{c\ell}(t)$, if conserved current $V^c_{\mu}(x)$ defined at the sink, no additional propagators needed, but two additional diagrams appear:

$$\begin{array}{c} & \blacksquare \propto \sum_{x,\mu} V^c_{\mu}(x) A^2_{\mu}(x) & \text{from } \delta^2_e V^c_{\mu} \\ & \bullet \propto \sum_{x,\mu} T_{\mu}(x) A_{\mu}(x) & \text{from } \delta^2_e V^c_{\mu} \end{array}$$

Note: In our case ($q_d = q_s$ and $m_d = m_s$), the "isovector" current $\bar{\psi}_d \gamma_\mu \psi_d - \bar{\psi}_s \gamma_\mu \psi_s$ does not require valencedisconnected diagrams .

RM123 on HVP

IB corrections to the HVP

Using the local-local implementation for the correlator $G^{R,II}(t) = Z_V G^{II}(t) Z_V^T$

$$s_{\mu}^{HVP} = \left(\frac{\alpha}{\pi}\right)^2 \sum_{f_1, f_2} \int_0^\infty dt \, G_{f_1 f_2}^{R, l'}(t) \mathcal{K}(t; m_{\mu}) \,, \quad G_{f_1 f_2}(t) = \frac{1}{3} \sum_{\vec{x}, k} \langle V_k^{f_1}(x) V_k^{f_2}(0) \rangle$$

in TMR arXiv:1107.4388v2 with $K(t; m_{\mu})$ def as \tilde{K} in arXiv:1705.01775.

 a_{μ}^{HVP} receives two types of IB corrections:

1. Corrections to correlators

$$\begin{split} \delta_{(G)} a^{HVP}_{\mu} &= \left(\frac{\alpha}{\pi}\right)^2 \int dt \, Z_V^{(0)} \, \delta G''(t) Z_V^{(0)'} \, K(t; m_{\mu}) \\ G''(t) &= G''(t)^{(0)} + \delta G''(t) = G''(t)^{(0)} + \sum_f \delta m_f \frac{\partial G''(t)}{\partial m_f} \bigg|_{(0)} + \frac{e^2}{2} \left. \frac{\partial^2 G''(t)}{\partial e^2} \right|_{(0)} \end{split}$$

2. Corrections to renormalization constants

$$\begin{split} \delta_{(Z)} a^{HVP}_{\mu} &= \left(\frac{\alpha}{\pi}\right)^2 \int dt \left[Z_V^{(0)} G''(t)^{(0)} \delta Z_V^T + \delta Z_V G''(t)^{(0)} Z_V^{(0)^T} \right] K(t; m_{\mu}) \\ Z_V &= Z_V^{(0)} + \delta Z_V = Z_V^{(0)} + \sum_f \delta m_f \left. \frac{\partial Z_V}{\partial m_f} \right|_{(0)} + \frac{1}{2} e^2 \frac{\partial^2 Z_V}{\partial e^2} \right|_{(0)} \end{split}$$

Alternatively, we also use conserved-local correlator $G^{R,cl}(t) = G^{ll}(t)Z_V^T$.

Renormalization constants Z_V : LO

Renormalization conditions defined in *adjoint* basis of SU(4) generators $\lambda_3, \lambda_8, \lambda_{15}$ plus the identity $\lambda_0 = \mathbb{1}$ (see arXiv:hep-lat/0511014v3

$$V_{\mu}^{em} = \sum_{f=u,d,s,c} Q_f \bar{\psi}_f \gamma_{\mu} \psi_f \quad \to \quad \tilde{V}_{\mu}^{em} = \frac{1}{3} V_{\mu}^0 + V_{\mu}^3 + \frac{1}{\sqrt{3}} V_{\mu}^8 - \frac{1}{\sqrt{6}} V_{\mu}^{15}$$

with adjoint currents $V^{0,3,8}_{\mu} = \frac{1}{2} \operatorname{tr}(\lambda_{0,3,8} \mathcal{V}), \ V^{15}_{\mu} = \operatorname{tr}(\lambda_{15} \mathcal{V}) \text{ and } [\mathcal{V}]_{f_1 f_2} = \bar{\psi}_{f_1} \gamma_{\mu} \psi_{f_2}.$

[m] m/ m//

$$\begin{bmatrix} Z_V \end{bmatrix}_{ab} \equiv \lim_{x_0 \to \infty} \overline{G}_{ad}^{cl} \cdot (\overline{G}^{ll})_{db}^{-1}, \text{ with } a, b = 0, 3, 8, 15$$

$$\tilde{Z}_V^{A400} = \begin{pmatrix} 0.6587(4) & 0.0000(0) & 0.0000(0) & 0.0221(2) \\ 0.0000(0) & 0.6772(5) & 0.0000(0) & 0.0000(0) \\ 0.0000(0) & 0.0000(0) & 0.6772(5) & 0.0000(0) \\ 0.0441(5) & 0.0000(0) & 0.0000(0) & 0.6231(10) \end{pmatrix}$$

Renormalization constants Z_V : IBE

Expand $ilde{Z}_V = \lim_{x_0 o \infty} ilde{G}^{cl}(x_0) (ilde{G}^{ll}(x_0))^{-1}$ at first order in δm_f and e^2

$$\delta \tilde{Z}_{V} = \sum_{f} \delta m_{f} \frac{\partial \tilde{Z}_{V}}{\partial m_{f}} + e^{2} \frac{\partial \tilde{Z}_{V}}{\partial e^{2}}, \quad w/$$
$$\frac{\partial \tilde{Z}_{V}}{\partial \varepsilon_{i}} = \lim_{x_{0} \to \infty} \left[\frac{\partial \tilde{G}^{cl}}{\partial \varepsilon_{i}}(x_{0}) - \tilde{G}^{cl}(x_{0}) (\tilde{G}^{ll}(x_{0}))^{-1} \frac{\partial \tilde{G}^{ll}}{\partial \varepsilon_{i}}(x_{0}) \right] \cdot (\tilde{G}^{ll}(x_{0}))^{-1}$$

$$\frac{\partial \tilde{Z}_V}{\partial e^2}$$
: requires 7 diagrams for $G^{ll} + 10$ diagrams for G^{cl}
 $\frac{\partial \tilde{Z}_V}{\partial m_f}$: each ∂_{m_f} requires \circlearrowright for G^{ll} and G^{cl} and all f

$$\begin{split} \delta \tilde{Z}_V &= \begin{pmatrix} -0.0002(219) & 0.00026(95) & 0.00027(11) & 0.000147(76) \\ 0.000230(93) & -0.00008(16) & 0.00027(11) & 0.000094(38) \\ 0.000133(54) & 0.00027(11) & -0.00005(19) & 0.000054(22) \\ 0.00030(15) & 0.00038(15) & 0.000217(87) & -0.000259(62) \end{pmatrix} \\ \\ \frac{\delta \tilde{Z}}{\tilde{Z}} &= \begin{pmatrix} -0.00003(29) & - & - & 0.0067(34) \\ - & -0.00012(24) & - & - \\ 0.0068(34) & - & - & -0.0007(28) & - \\ 0.0068(34) & - & - & -0.0007(28) \end{pmatrix} \end{split}$$

just two of many plots

Results for a_{μ}^{HVP} from LO connected correlators

- Disconnected contributions currently ignored
- Tails are fitted to a single exponential at $t_{ ext{cut}} \in (1.2, 1.3)$ fm
- Local- correlators renormalized as $G^{R,cl} = G^{cl} \cdot Z_V^T$ and $G^{R,ll} = Z_V \cdot G^{ll} \cdot Z_V^T$

$LO a_{\mu}$ OII A400a000524						
type	$a^u_\mu imes 10^{10}$	$a_{\mu}^{d/s} imes 10^{10}$	$a^c_\mu imes 10^{10}$			
11	188.40(189)	47.11(47)	7.59(4)			
cl	186.30(195)	46.58(49)	5.99(3)			
type	am	am ^c _V				
11	0.289	0.8548(3)				
cl	0.290	0.8546(3)				

10 aHVP an A400-00-224

LO a^{HVP} on A380a07b324

	· · µ		
type	$a^u_\mu imes 10^{10}$	$a_{\mu}^{d/s} imes 10^{10}$	$a^c_\mu imes 10^{10}$
11	194.0(2.3)	47.2(6)	7.55(4)(4)
cl	192.2(2.2)	46.8(6)	5.95(4)(3)
type	am ^u V	am ^{d,s}	am _V
11	0.2795(27)	0.2807(4)	0.8496(4)(3)
cl	0.2791(31)	0.281(4)	0.8496(4)(3)

Corrections from correlator derivatives

$$\delta G(x_0) = \sum_{f} \frac{\partial G(x_0)}{\partial m_f} \delta m_f + \frac{\partial G(x_0)}{\partial e^2} e^2$$

- Same derivatives already needed for Z_V, now for all x₀
- Tails' corrections $A = A^{(0)} + \delta A$ and $m_{\text{eff}} = m_{\text{eff}}^{(0)} + \delta m$ from 2-params linear fit:

$$\frac{G^{(1)}(x_0) - G^{(0)}(x_0)}{G^{(0)}(x_0)} = \delta A / A^{(0)} - \delta m x_0$$

Procedure repeated for different fit ranges (light quarks) for systematic effects

Corrections to $\delta a_{\mu}^{u,s,d,c}$ from Z_V and G(t): summary of results (1)

Corrections from renormalization constants $\times 10^{10}$				
	$\delta_{Z_v} a_{\mu}^{HVP,uu}$	=	$-510(33) \delta m_u - 22(3) e^2$	
loc-loc	$\delta_{Z_v} a_\mu^{HVP,dd/ss}$	=	$0.016(23)\delta m_u - 128(8)\delta m_{d/s} - 1.4(2)e^2$	
	$\delta_{Z_v} a_{\mu}^{HVP,cc}$	=	$0.003(4) \delta m_u - 6.37(2) \delta m_c - 0.578(2) e^2$	
	$\delta_{Z_v} a_{\mu}^{HVP,uu}$	=	$-252(16) \delta m_u - 11(2) e^2$	
cons-loc	$\delta_{Z_v} a_{\mu}^{HVP,dd/ss}$	=	$0.008(11) \delta m_u - 63(4) \delta m_{d/s} - 0.68(11) e^2$	
	$\delta_{Z_v} a_\mu^{HVP,cc}$	=	$0.0012(16) \delta m_u - 2.516(9) \delta m_c - 0.2282(8) e^2$	

Corrections from correlator $\times 10^{10}$

	$\delta_{G} a_{\mu}^{HVP,uu}$	=	$-4364(266) \delta m_u - 216(14) e^2$
loc-loc	$\delta_{G} a_{\mu}^{HVP,dd/ss}$	=	$-1091(67)\delta m_{d/s} - 13.5(9)e^2$
	$\delta_{G} a_{\mu}^{HVP,cc}$	=	$-59.2(3) \delta m_c - 3.119(13) e^2$
	$\delta_{G} a_{\mu}^{HVP,uu}$	=	$-4591(288) \delta m_u - 227(15) e^2$
cons-loc	$\delta_{G} a_{\mu}^{HVP,dd/ss}$	=	$-1148(72) \delta m_{d/s} - 14.2(1.0) e^2$
	$\delta_{G} a_{\mu}^{HVP,cc}$	=	$-57.2(2) \delta m_c - 3.295(14) e^2$

IB effects to A400a00b324 from valence, connected diagrams.

Corrections to $\delta a_{\mu}^{u,s,d,c}$ from Z_V and G(t): summary of results (2)

Corrections from renormalization constants $\times 10^{10}$					
	$\delta_{Z_v} a_{\mu}^{HVP,uu}$	=	2.60(17) - 2.02(28)	=	0.56(27)
loc-loc	$\delta_{Z_v} a_\mu^{HVP,dd/ss}$	=	0.127(8) - 0.128(18)	=	0.019(18)
	$\delta_{Z_v} a_\mu^{HVP,cc}$	=	0.04347(14) - 0.05300(18)	=	-0.015(6)
	$\delta_{Z_v} a_{\mu}^{HVP,uu}$	=	1.28(8) - 1.01(18)	=	0.28(14)
cons-loc	$\delta_{Z_v} a_\mu^{HVP,dd/ss}$	=	0.063(4) - 0.062(10)	=	0.0094(91)
	$\delta_{Z_v} a_\mu^{HVP,cc}$	=	0.01717(16) - 0.02093(7)	=	0.094(91)
Corrections from correlator ×10 ¹⁰					
	$\delta_G a_\mu^{HVP,uu}$	=	22.2(1.4) - 19.8(1.3)	=	2.35(26)
loc-loc	$\delta_{G}a_{\mu}^{HVP,dd/ss}$	=	1.09(7) - 1.24(8)	=	0.01(6)
	$\delta_{G} a_{\mu}^{HVP,cc}$	=	0.4042(20) - 0.2860(12)	=	0.064(52)

					. ,
	$\delta_{G} a_{\mu}^{HVP,uu}$	=	23.4(1.5) - 20.8(1.4)	=	2.49(27)
cons-loc	$\delta_{G} a_{\mu}^{HVP,dd/ss}$	=	1.14(7) - 1.30(9)	=	0.01(7)
	$\delta_{G} a_{\mu}^{HVP,cc}$	=	0.3905(14) - 0.3022(13)	=	0.04(5)

by using the theoretical mass shifts of slide 2

Outlook

Outlook

- Goal of this ongoing work: compare two methods for computing IB effects.
- At the moment, the analysis includes all valence-connected terms,
- However, the plan is to obtain a full comparison by including all diagrams.
- Sea IB effects computed by A. Cotellucci (see talk), to be included in analysis.
- Done/Computed:
 - Mass derivatives of mesons in ϕ_i : π^{\pm} , π^0 , K^{\pm} , K^0 , D^{\pm} , D^0 , D_s^{\pm} .
 - Bare parameters' shift to match IsoQCD+RM123 to QED+QCD computed.
 - Renormalization constants of local vector currents.
 - Derivatives of Z_V and G(t).
- Next step: perform analysis using "isovector" current

$$\bar{d}\gamma_{\mu}d - \bar{s}\gamma_{\mu}s$$

physically well defined, does not include any disconnected diagram.

- Ensembles with smaller pion masses, larger volumes, smaller a are being generated.
- Next update Muon g-2 Theory Initiative workshop at KEK.

Thank you for listening!