Machine-learning techniques as noise reduction strategies in lattice calculations of the muon g-2

Tom Blum, Alessandro Conigli, Lukas Geyer, Simon Kuberski, Alexander Segner, <u>Hartmut Wittig</u>

The 41st International Symposium on Lattice Field Theory — Lattice 2024 The University of Liverpool **28 July to 3 August 2024**

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

Motivation

Lattice QCD calculations of precision observables involve high numerical cost:

- Exponential rise of statistical noise at large distances
- Isospin-breaking corrections numerically small but expensive to compute

Idea: use trained neural net to

- Produce approximate estimates for correlation functions at low numerical cost • Predict "expensive" contribution using a "cheap" observable

[CD. Erb, J. Parrino]

Low-mode averaging

Split quark propagator into low-mode contribution and that from orthogonal complement

[Giusti, Hernández, Weisz, H.W. 2004; DeGrand and Schaefer 2004]

• "eigen-eigen" part dominates long-distance regime • "rest-eigen" part always sub-dominant, but numerical effort scales $\sim N_{\rm low} = O(1000)$

Machine-learning strategy

All-Mode Averaging / Truncated Solver Method:

Compute many approximate solutions — obtain exact result after applying bias correction

 $\langle O \rangle = \left\langle O_{\text{appx}} \right\rangle$ "chear

Train model or network on the correlation between input and predicted quantities Ideally O_{appx} should fluctuate closely with O

[Blum, Izubuchi, Shintani 2012]

- **Idea:** Role of "sloppy solves" taken over by a machine-learning algorithm [Yoon, Bhattacharya, Gupta 2018]

$$+\left\langle (O - O_{appx}) \right\rangle$$

$$\uparrow$$
correction

Machine-learning strategy

All-Mode Averaging / Truncated Solver Method:

Compute many approximate solutions — obtain exact result after applying bias correction

Train model or network on the correlation between input and predicted quantities

Ideally O_{appx} should fluctuate closely with O

Here: predict "rest-eigen" contribution given the "eigen-eigen" and "rest-rest" as input

[Blum, Izubuchi, Shintani 2012]

- **Idea:** Role of "sloppy solves" taken over by a machine-learning algorithm [Yoon, Bhattacharya, Gupta 2018]

$$+\left\langle (O - O_{appx}) \right\rangle$$

$$\uparrow$$
correction

Divide configurations within one ensemble into subsets for training, prediction and bias correction

Fully connected neural network with one hidden layer to predict all timeslices simultaneously: • ReLU activation functions on hidden layer, linear activation function on output layers

- Dropout layers to help with overfitting

"rest-rest" and "eigen-eigen" contributions as input \rightarrow Input layers of size $2 \cdot (T/a)$

"rest-eigen" contribution entering the loss function \rightarrow Output layer of size (T/a)

Ensembles:

A654: L/a = 24, T/a = 48, $m_{\pi} \simeq 420 \,\text{MeV}$, $N_{\text{cfg}} = 2500$ D450: L/a = 64, T/a = 128, $m_{\pi} \simeq 280 \text{ MeV}$, $N_{\text{cfg}} = 500$

Pseudoscalar correlator: rest-eigen contribution

Test quality of prediction for "rest-eigen" contribution — no bias correction (A654 ensemble)

Pseudoscalar correlator: rest-eigen contribution

Test quality of prediction for "rest-eigen" contribution — bias-corrected (A654 ensemble)

Pseudoscalar correlator: total contribution

Total contribution (A654 ensemble)

Vector correlator

Bias-corrected "re"-correlator consistent with exact calculation, but errors increase at large t

Hartmut Wittig

Test quality of prediction of rest-eigen part — with and without bias correction (A654 ensemble)

Vector correlator

Absolute error of rest-eigen part and total contribution (A654 ensemble)

Bias-corrected "re"-correlator consistent with exact calculation, but errors increase at large t No gain in statistical precision after summing all contributions, unless $N_{\rm bias}$ is increased further

Vector vs. pseudoscalar correlator

Fraction of the total variance of "ee", "re" and "rr" contributions to (D450 ensemble)

Vector correlator

"Eigen-eigen" contribution dominates error in long-distance regime of the pseudoscalar correlator

Pseudoscalar correlator

Precision scale setting for $(g - 2)_{\mu}$ HVP calculations

RM123 approach: expansion about iso-symmetric QCD

Precision scale setting for $(g - 2)_{\mu}$ HVP calculations

Precision scale setting for $(g - 2)_{\mu}$ HVP calculations

Precision scale setting for $(g - 2)_{\mu}$ HVP calculations

Machine-learning model

• Train model $M(C^{(0)}, C^{(1)}_{\Delta m_{\mu}}, C^{(1)}_{\Delta m_{d}}, C^{(1)}_{\Delta m_{s}})$ to predict the QED contribution $C^{(1)}_{\rho^{2}}$ $M(t) = \alpha C^{(0)}(t) + \beta C^{(1)}_{\Lambda m}$

$$G_{n_u}(t) + \gamma C^{(1)}_{\Delta m_d}(t) + \delta C^{(1)}_{\Delta m_s}(t) + \epsilon$$

• Correct for bias by using a small number of sources on each configuration: $N_{\rm src, \, bias} \ll N_{\rm src}$

• Ensemble N451: $48^3 \cdot 96$, $m_{\pi} \simeq 280 \text{ MeV}$, $N_{\text{cfg}} = 1011$, $N_{\text{train}} = 20$, $N_{\text{src}} = 32$, $N_{\text{src, bias}} = 1$

Results

QED correction to Ω^- and Ξ^- masses on N451 ensemble

- Increasing $N_{\rm src, \, bias}$ has no effect on the uncertainty in the bias-corrected result
- Training time negligible; reduction of numerical cost by 50%

Results

QED correction to Ω^- and Ξ^- masses on N451 ensemble

- Increasing $N_{\rm src, bias}$ has no effect on the uncertainty in the bias-corrected result
- Training time negligible; reduction for numerical cost by 50%

Summary and conclusions

- Machine-learning models with bias corr with comparable statistical precision
- No "noise reduction" observed in all models studied so far
- Saving in computer time can be substantial, but depends strongly on the observable
- Using ML for QED part leads to 50% reduction in numerical effort for computing baryon masses including isospin-breaking corrections
- Rest-eigen part of vector correlator: bias correction dominates the total unce
- bias correction dominates the total uncertainty; less CPU time produces a larger error
 Outlook: optimise setup to increase correlations between O_{appx} and O

Machine-learning models with bias correction are able to reproduce exact calculations

Hartmut Wittig

Grid search and *R*-score

$$R_{k} = 1 - \frac{\sum_{i=1}^{47} (v_{\mathrm{t},k,i}^{\mathrm{ER}} - v_{\mathrm{p},k,i}^{\mathrm{ER}})^{2}}{\sum_{i=1}^{47} (v_{\mathrm{t},k,i}^{\mathrm{ER}} - \hat{v}_{\mathrm{t},i}^{\mathrm{ER},\mathrm{tr}})^{2}}, \quad R_{k} \in (-\infty, 1].$$

Models with increasing complexity lead to overfitting