

Science and Technology Facilities Council

Analysis of g-2 long distance two-pion correlators for reconstruction of light vector correlators

Joe Mckeon (RBC/UKQCD collaboration)

Lattice 2024, Liverpool, 29/07/24

<u>Boston University</u> Nobuyuki Matsumoto

BNL and BNL/RBRC

Peter Boyle Taku Izubuchi Christopher Kelly Shigemi Ohta (KEK) Amarji Soni Masaaki Tomii Xin-Yu Tuo Shuhei Yamamoto

<u>University of Cambridge</u> Nelson Lachini

CERN

Matteo Di Carlo Felix Erben Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Sarah Fields Ceran Hu Yikai Huo Joseph Karpie (JLab) Erik Lundstrum Bob Mawhinney Bigeng Wang (Kentucky)

University of Connecticut

Tom Blum Jonas Hildebrand

The RBC & UKQCD collaborations

Luchang Jin Vaishakhi Moningi Anton Shcherbakov Douglas Stewart Joshua Swaim

DESY Zeuthen

Raoul Hodgson

Edinburgh University

Luigi Del Debbio Vera Gülpers Maxwell T. Hansen Nils Hermansson-Truedsson Ryan Hill Antonin Portelli Azusa Yamaguchi

Johannes Gutenberg University of Mainz Alessandro Barone

Liverpool Hope/Uni. of Liverpool Nicolas Garron

LLNL Aaron Meyer

<u>Autonomous University of Madrid</u> Nikolai Husung

<u>University of Milano Bicocca</u> Mattia Bruno <u>Nara Women's University</u> Hiroshi Ohki

Peking University

Xu Feng Tian Lin

University of Regensburg

Andreas Hackl Daniel Knüttel Christoph Lehner Sebastian Spiegel

RIKEN CCS

Yasumichi Aoki

University of Siegen

Matthew Black Anastasia Boushmelev Oliver Witzel

University of Southampton

Bipasha Chakraborty Ahmed Elgaziari Jonathan Flynn Joe McKeon Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

Stony Brook University

Fangcheng He Sergey Syritsyn (RBRC)

Starting point for computing $a_{\mu}^{HVP,LO}$

 \widetilde{K} : QED kernel function^[1].

G(t): Vector correlator representing the hadronic blob (indices over quark flavours).

 J_k^{em} : Electromagnetic current.

$$a_{\mu}^{HVP,LO} = a_{\mu}^{SD} + a_{\mu}^{W} + a_{\mu}^{LD} [2,3]$$

Goal is to compute a_{μ}^{LD} with higher precision

[1] Bernecker and Meyer, EPJ A47 (2011) 148
[2] Blum et al., PRL 121, 022003 (2018)
[3] Lehner, EPJ 175 (2018) 01024
HVP image from www.bnl.gov/newsroom/news.php?a=217530

$$a_{\mu}^{HVP,LO} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dt \, G(t) \tilde{K}(t;m_{\mu})$$

$$G(t)\delta_{kl} = -\int d^3x \left\langle J_k^{em}(x)J_l^{em}(0)\right\rangle$$

SD = Short-distance W = Standard window LD = Long-distance

Large correlator noise at LD

- > $a_{\mu}^{HVP,LO}$, and its error, are dominated by light connected vector correlators.
- > At LD light connected vector correlators are too noisy by lattice construction
- > Need to reduce this noise by reconstructing $\pi\pi$ -states at LD to achieve more precise $a_{\mu}^{HVP,LO}$.

Aim of this talk: to give details of reconstruction of light connected vector correlator from $\pi\pi$ -states at LD

Dealing with the LD regime

> Reconstruct G(t) from individual $\pi\pi$ states^[1,2]

$$G(t) = \frac{10}{9} \sum_{n=0}^{n_{max}} |A_n|^2 e^{-E_n t}$$
[3,4]

- > Consider a large variational basis of $\pi\pi$ operators extract as many energy levels as precisely as possible.
- > Extraction possible from the optimal linear combination of interpolating $\pi\pi$ operators (see next slide).
- > Achieved via solving the Generalised Eigenvalue Problem (GEVP).
- > Will also yield $|A_n|$ s.

 ^[1] Dudek et al., PRD77: 034501, 2008
 [2] Bruno et al., arXiv:1910.11745
 [3] Della Morte et al., JHEP 1710 (2017) 020
 [4] Della Morte et al., arXiv:1710.10072

Finding E_n s

Consider a diagonal correlator, c(t), containing linear combinations of lattice generated $\pi\pi$ operators, $\mathcal{O}_i^{2\pi}$:

$$\mathbf{c}(t) = \langle 0 | \Omega(t) \Omega^{\dagger}(0) | 0 \rangle, \text{ where } \Omega = \Sigma_{i} v_{i}^{*} \mathcal{O}_{i}^{2\pi}$$
$$\mathbf{c}(t) = \sum_{n} W_{n} e^{-E_{n}t}, \quad W_{n} = \left| \langle n | \Omega^{\dagger} | 0 \rangle \right|^{2} \ge 0 \quad \forall n$$

Local minima occur when only one coefficient is **non**-zero, i.e.:

$$\mathbf{c}(t)|_{\text{local min p}} = W_p e^{-E_p t}$$

For arbitrary integer p. Hence

Fitting local minima will yield state energies.

Solving GEVP to extract energies

$$C_{ij}(t) = \langle 0|\mathcal{O}_i^{2\pi}(t)\mathcal{O}_j^{2\pi}(0)|0\rangle \longrightarrow \mathbf{c}(t) = \langle 0|\Omega(t)\Omega^{\dagger}(0)|0\rangle = \sum_{i,j} v_i^* C_{ij}(t)v_j$$

Solving GEVP to extract energies

$$C_{ij}(t) = \langle 0|\mathcal{O}_i^{2\pi}(t)\mathcal{O}_j^{2\pi}(0)|0\rangle \longrightarrow \mathbf{c}(t) = \langle 0|\Omega(t)\Omega^{\dagger}(0)|0\rangle = \sum_{i,j} v_i^* C_{ij}(t)v_j$$

Normalization condition (N) enforced by a Lagrange multiplier prevents trivial solution ($v_i = 0 \forall i$).

$$N = \sum_{i,j} v_i^* C_{ij}(t_0) v_j$$

 t_0 should be chosen large enough to avoid contamination from higher states.^[1]

Solving GEVP to extract energies

$$C_{ij}(t) = \langle 0|\mathcal{O}_i^{2\pi}(t)\mathcal{O}_j^{2\pi}(0)|0\rangle \longrightarrow \mathbf{c}(t) = \langle 0|\Omega(t)\Omega^{\dagger}(0)|0\rangle = \sum_{i,j} v_i^* C_{ij}(t)v_j$$

Normalization condition (N) enforced by a Lagrange multiplier prevents trivial solution ($v_i = 0 \forall i$).

$$N = \sum_{i,j} v_i^* C_{ij}(t_0) v_j$$

$$\mathbf{c}(t) = \sum_{i,j} v_i^* \left[C_{ij}(t) - \lambda C_{ij}(t_0) \right] v_j + \lambda N$$

t₀ should be chosen large enough to avoid contamination from higher states.^[1]

$$\frac{\partial \mathbf{c}(t)}{\partial v_i^*} = 0 \implies C(t)v = \lambda C(t_0)v$$

Generalized Eigenvalue Problem

Will see that fitting λ yield energies.

[1] Dudek et al., PRD77: 034501, 2008

Reordering of Spectra in GEVP

Occasionally, eigenvalues are not ordered correctly after solving the GEVP.

Reordering of Spectra in GEVP

Exploit

 $v_n^{\dagger} C(t_0) v_m = \delta_{nm}$

General

$$\begin{pmatrix} v_1(t)C(t_0)v_1(t+1) & \dots & v_1(t)C(t_0)v_n(t+1) \\ \vdots & \ddots & \vdots \\ v_n(t)C(t_0)v_1(t+1) & \dots & v_n(t)C(t_0)v_n(t+1) \end{pmatrix}$$

Occasionally, eigenvalues are not ordered correctly after solving the GEVP.

	Expectation								Rea	ality		
$I_{n \times n} =$	$\begin{pmatrix} 1\\0\\0\\0\\0\\0\\0 \end{pmatrix}$	0 1 0 0 0	0 0 1 0 0 0	0 0 1 0 0	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} $	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} \sim 1 \\ \sim 0 \end{pmatrix}$	$\begin{array}{c} \sim 0 \\ \sim 1 \\ \sim 0 \end{array}$	$\begin{array}{c} \sim 0 \\ \sim 0 \\ \sim 1 \\ \sim 0 \\ \sim 0 \\ \sim 0 \\ \sim 0 \end{array}$	$ \begin{array}{c} \sim 0 \\ \sim 1 \\ \sim 0 \end{array} $	$ \begin{array}{c} \sim 0 \\ \sim 0 \\ \sim 0 \\ \sim 1 \\ \sim 0 \\ \sim 0 \\ \sim 0 \end{array} $	$\begin{array}{c} \sim 0 \\ \sim 1 \end{array}$

Tells us two eigenvectors have swapped order.

Comparison Plot (Ensemble Ca)

2pi.g5.0.0.1 2pi.g5.0.0.2 2pi.g5.0.1.1 2pi.g5.0.1.2 2pi.g5.0.1.2.v2 2pi.g5.0.2.2 2pi.g5.1.1.1 2pi.g5.1.1.2 2pi.g5.1.1.2.v2 svec.gi

Parameter slide

ID	a^{-1}/GeV	N_{f}	$L^3 \times T$	$m_{\pi}/{ m MeV}$	$m_K/{ m MeV}$	N_{conf}
48I	1.7312(28)	2 + 1	$48^3 \times 96$	139.32(30)	499.44(88)	27
Ca	1.7312(28)	2 + 1	$64^3 \times 128$	139.32(30)	499.44(88)	25
64I	2.3549(49)	2 + 1	$64^3 \times 128$	138.98(43)	507.5(1.5)	31
96I	2.6920(67)	2 + 1	$96^3 \times 192$	131.29(66)	484.5(2.3)	18

The $\pi\pi$ data

For 48I/64I we use: 2pi.g5.0.0.1 2pi.g5.0.0.2 2pi.g5.0.1.1 2pi.g5.1.1.1 svec.gi

Data is generated using distillation methods For 96I/Ca we use: 2pi.g5.0.0.1 2pi.g5.0.0.2 2pi.g5.0.1.1 2pi.g5.0.1.2 2pi.g5.0.1.2.v2 2pi.g5.0.2.2 2pi.g5.1.1.1 2pi.g5.1.1.2 2pi.g5.1.1.2.v2 svec.gi

Extracting energies from the eigenvalues

$$C(t)v = \lambda C(t_0)v$$

Can be shown that^[1]:

$$\lambda_n(t) \stackrel{t \to \infty}{=} c_n e^{-tE_n} \left[1 + \mathcal{O}\left(e^{-t\Delta E_n} \right) \right]$$

We use below function due to finite lattice volume

$$\lambda_n^{fit}(t) = (1 - A_n)e^{-E_n(t - t_0)} + A_n e^{-E'_n(t - t_0)}$$

where
$$E'_n = E_n + \Delta E_n$$

[1] M. Luscher and U. Wolff, NP B339 222 (1990)

Fitting of GEVP spectra (Ensemble 64)

Fit form:

$$\lambda_n^{fit}(t) = (1 - A_n)e^{-E_n(t - t_0)} + A_n e^{-E'_n(t - t_0)}$$

Fit criteria:

- $N_{dof} \ge 4$ (relaxed for higher operators)
- t_{min} and t_{max} chosen to avoid noise and excited state contamination.
- $0.05 < p_{val} < 0.95$

Comparison between groups (Ensemble 96I)

Finding A_n 's

• Overlap factors can be found from below ratio^[1,2].

$$D_{nn}(t) = \langle \Omega_n(t) \Omega_n^{\dagger}(0) \rangle = v_n^{\dagger} C(t) v_n$$

$$\langle J(t)\Omega^{\dagger}(0)\rangle = \sum_{i} v_{ni} \langle J(t)\mathcal{O}_{i}^{2\pi\dagger}(0)\rangle$$

$$R^{E_n}(t) = \frac{\sum_i v_{ni} \langle J(t) \mathcal{O}_i^{2\pi\dagger}(0) \rangle}{\sqrt{D_{nn}} e^{-E_n t/2}}$$

$$|R^{E_n}(t)|^2 \xrightarrow{t} |A_n|^2$$

[1] F. Erben et al., PRD 101 054504 (2020)[2] Gérardin et al., PRD 100 014510 (2019)

Reconstructing G(t) (Ensemble 481)

Summary:

- a^{HVP}_µ and its error are dominated by light connected vector correlators which are too noisy at LD
- We have shown how using a large variational bases of ππ operators and GEVP methods we can reconstruct the ππ-states at LD and significantly reduce the errors at LD
- □ This in turn significantly improved a_{μ} kernel at LD after implementing improved bounding method (as detailed in Christoph's talk)

Science and Technology Facilities Council

Integrand Reconstruction (Ensemble 48I)

$$a_{\mu}^{HVP,LO} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dt \, G(t) \tilde{K}(t;m_{\mu})$$

Improved bounding method used (as detailed in Christoph's talk).

