Status of the RBC/UKQCD HVP program

Christoph Lehner (University of Regensburg)

July 29, 2024 - Lattice 2024

<u>Boston University</u> Nobuyuki Matsumoto

BNL and BNL/RBRC

Peter Boyle Taku Izubuchi Christopher Kelly Shigemi Ohta (KEK) Amarji Soni Masaaki Tomii Xin-Yu Tuo Shuhei Yamamoto

University of Cambridge

Nelson Lachini

CERN

Matteo Di Carlo Felix Erben Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Sarah Fields Ceran Hu Yikai Huo Joseph Karpie (JLab) Erik Lundstrum Bob Mawhinney Bigeng Wang (Kentucky)

<u>University of Connecticut</u> Tom Blum Jonas Hildebrand

The RBC & UKQCD collaborations

Luchang Jin Vaishakhi Moningi Anton Shcherbakov Douglas Stewart Joshua Swaim

DESY Zeuthen

Raoul Hodgson

Edinburgh University

Luigi Del Debbio Vera Gülpers Maxwell T. Hansen Nils Hermansson-Truedsson Ryan Hill Antonin Portelli Azusa Yamaguchi

Johannes Gutenberg University of Mainz Alessandro Barone

Liverpool Hope/Uni. of Liverpool Nicolas Garron

LLNL Aaron Meyer

<u>Autonomous University of Madrid</u> Nikolai Husung

University of Milano Bicocca

Mattia Bruno

<u>Nara Women's University</u> Hiroshi Ohki

Peking University

Xu Feng Tian Lin

University of Regensburg

Andreas Hackl Daniel Knüttel Christoph Lehner Sebastian Spiegel

RIKEN CCS

Yasumichi Aoki

University of Siegen

Matthew Black Anastasia Boushmelev Oliver Witzel

University of Southampton

Bipasha Chakraborty Ahmed Elgaziari Jonathan Flynn Joe McKeon Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

Stony Brook University Fangcheng He Sergey Syritsyn (RBRC)

The magnetic moment and quantum corrections

The g-factor in $\vec{\mu} = g\left(\frac{e}{2m}\right)\vec{S}$ describes the strength of coupling to a magnetic field, which can be measured and computed from theory **very** precisely.

The quantum effects arise from virtual particle contributions from all known **and unknown** particles.

By comparing high-precision experiments and theory, we have the potential to learn about such contributions of new particles.

Experimental status (PRL 131 (2023) 16, 161802)

Standard model theory is work in progress

Tensions for the intermediate window between lattice and e⁺e⁻ data (minus CMD3) clearly established. Tensions within e⁺e⁻ data so far unresolved.

- There is a clear desire to have full first-principles lattice QCD result with competitive precision (final goal is below 2/1000 relative error).
- Alternative idea suggested in RBC/UKQCD18: if data and lattice agrees, can supplement lattice data at long distances by dispersive results. Picked up by BMW24 paper for tail beyond 2.8 fm (5/100 of total).

Establishing lattice QCD at per-mille level precision

- Follow RBC/UKQCD18 strategy to split into Euclidean windows and compute short-distance (a^{SD}_μ up to 0.4 fm), intermediate distance (a^W_μ), and long-distance (a^{LD}_μ beyond 1.0 fm) separately.
- For isospin-symmetric light-quark connected (lqc) contributions, agreement for a_{μ}^{SD} and a_{μ}^{W} has been established (see also talk by S. Spiegel on Wed 11:15):

Aim for final precision of $O(1.5 \times 10^{-10})$, satisfied already for isospin symmetric a_{μ}^{SD} and a_{μ}^{W} .

Next frontier: isospin symmetric lqc a_{μ}^{LD}

- This talk: new unblinded RBC/UKQCD24 results for this window and total iso lqc results at 7.5/1000 precision
- Long-distance reconstruction of vector-vector correlator for hadronic vacuum polarization

$$C(t) = rac{1}{3} \sum_{i=0,1,2} \sum_{\vec{x}} \langle 0 | V_i(\vec{x},t) V_i(0) | 0 \rangle$$

by lowest N finite-volume state contributions

$$C_{ ext{exclusive, N}}(t) = rac{1}{3} \sum_{i=0,1,2} \sum_{\vec{x}} \sum_{n=1}^{N} |\langle 0|V_i|n \rangle|^2 e^{-E_n t}$$

see arXiv:1710.10072,1910.11745.

- Our dedicated distillation effort started in 2017, first talk at KEK-TI workshop in 2018
- Substantial computing investment: GCS Jülich and LRZ, EuroHPC LUMI-G and Leonardo, ALCC, INCITE at OakRidge and Argonne
- Supported by substantial coding effort: Grid/GPT

Analysis was conducted in a blinded manner

- Overall blinding factor applied to every insertion of a vector current
- Each group (A, B, C, D, E) has their own blinding factor
- No person in collaboration knows blinding factors
- CL knows non-invertible hash function that computes the blinding factors but not the numbers
- Blinded analysis cross checked between groups by studying non-blinded intermediate results (spectra, ratio of C_{excl}/C)
- Scripts executed in joint meetings to reveal the relative blinding factors for relative unblinding between groups and same for full unblinding
- Absolute unblinding happened in a joint Zoom call on July 19 2024

Data for new analysis (10 ensembles)

Distillation strategy

- Distillation with heavily stout-smeared Laplace eigenvectors
- ▶ 60 eigenmodes for $m_{\pi}L \approx 4$ at physical pion mass and 200 eigenmodes for $m_{\pi}L \approx 5$ at physical pion mass
- Operator basis: two-pion operators with relative momentum \vec{p} plus (smeared) vector current; 10-operator basis up to $\vec{p} = (2\pi/L)(2,2,0)$ for larger volume and 5-operator basis for smaller volumes with \vec{p} up to $(2\pi/L)(2,0,0)$
- Dedicated two-pion scattering study will be published separately
- Dedicated four-pion study conducted (arXiv:1910.11745), zero-consistent coupling of additional states
- Distillation and vector-vector code publicly available at https://github.com/lehner/gpt
- See CL Bern TI 2023 talk for more details of data generation and group A analysis, next talk by Joe Mckeon for details of group E analysis.

Cross checks and comparisons before relative unblinding

Example tests: 96l spectrum (left) and 64l long-distance reconstruction (right)

Results group A with and without finite-volume corrections

 FV correction for largest ensemble is within statistical noise, FV corrections consistent with data.

Checks of finite-volume behavior against Hansen-Patella (HP)

Group A global fits and model average (1/2)

- Fit local-local and local-conserved with Z^π_V and Z^{*}_V (local-conserved to local-local ratio at 1 fm).
- Fit linear and linear plus quadratic pion-mass dependence
- Fit linear m_K (RBC/UKQCD20 world), m_{ss*} (BMW20 world) term

Fit additive

$$f(a^2) = f_0 + f_1 a^2 + f_2(w_0 m_\pi - (w_0 m_\pi)_{phys}) + \dots$$

and multiplicative

$$f(a^2) = f_0(1 + f_1a^2)(1 + f_2(w_0m_{\pi} - (w_0m_{\pi})_{\rm phys}) + \dots$$

ansatz for discretization errors.

Group A global fits and model average (2/2)

 $a \rightarrow 0$ correction is within statistical noise! Result statistics dominated.

Result of relative unblinding

Good agreement, some observations:

- Group D only took continuum limit of physical pion mass ensembles
- Groups A and B also verified the consistency of the continuum limits with and without ensembles 9 and L
- Lattice spacing uncertainty due to Ω⁻ mass responsible for larger errors in RBC/UKQCD18 world. Work on more precise determination is in progress.
- RBC/UKQCD18 and BMW20 worlds are consistent at current precision

Unblinded results in BMW20 isospin-symmetric world

Result for $a_{\mu}^{\rm iso~lqc}$ with 7.5/1000 precision.

Unblinded results in BMW20 isospin-symmetric world

Result for $a_{\mu}^{\rm iso~lqc}$ with 7.5/1000 precision.

$$egin{aligned} & a_\mu^{
m LD \ iso \ lqc} = 411.4(4.3)_{
m stat.}(2.3)_{
m syst.} imes 10^{-10} \,, \ & a_\mu^{
m iso \ lqc} = 666.2(4.3)_{
m stat.}(2.5)_{
m syst.} imes 10^{-10} \,. \end{aligned}$$

More high-precision lattice results needed for consolidation of full $a_{\mu}^{\rm iso \ lqc}$!

Summary

- First lattice result for the isospin symmetric light-quark connected long-distance window $a_{\mu}^{\rm LD}$ now unblinded.
- Combined with RBC/UKQCD23 short and intermediate-distance windows yields the currently most precise lattice QCD result for the total isospin symmetric light-quark connected result with an uncertainty of 7.5/1000

Publication will appear soon

- Data for updates on disconnected contributions, strange, charm, QED and SIB at physical pion mass including diagrams beyond the electro-quenched approximation is mostly generated. Will focus on analysis in the remainder of 2024. Aim to complete update of RBC/UKQCD18 as soon as possible.
- See talk by M. Bruno at 12:55 later in this session for an update on a part of the QED data and our tau program.
- Further precision improvements for the long-distance window are also planned for the near future, more data is being generated (also at new finer physical pion mass lattice ensemble with $a^{-1} = 3.5$ GeV)