Precision charmonium spectroscopy on CLS ensembles

Gunnar Bali, Sara Collins, Wolfgang Söldner, **Sebastian Spiegel**

Universität Regensburg

Lattice 2024, Liverpool July 30, 2024

- \bullet Precision study of stable charmonia to set baseline for investigations of XYZ states.
- Compute low lying charmonium masses and decay constants from isoQCD quark-line connected correlation functions as a benchmark for future studies including electromagnetic and annihilation effects.
- $m_c \not\ll a^{-1}$: how big are cut-off effects? Are they bigger for the mass than for fine structure splittings $\sim m_c$ v or spin-independent splittings $\sim m_c$ v 2 ?

For the moment being, we only study $J = 0$ and $J = 1$ charmonia (smeared interpolating operators without derivatives).

I will only show **very preliminary** results for a reduced set of observables $(\mathcal{M}_{\eta_c}$ and $\mathcal{M}_{J/\psi} - \mathcal{M}_{\eta_c})$ on a reduced set of gauge ensembles.

CLS ensembles in the quark mass plane

Ensembles available for this analysis

Results presented here

Example for a mass determination

Ensemble E250

Definitions and input

Scale set via $t_{0,\text{ph}}^{-1/2} = 1.362(8)$ GeV [RQCD, 2211.03744], obtained from m_{Ξ} .

Using this scale, we define the isoQCD physical quark mass point $(\{m_a\} \rightarrow \{m_{a, \text{ph}}\})$ as

$$
M_{\pi} = 135 \text{ MeV}, \quad M_K = 494 \text{ MeV}, \quad M_{\overline{D}} = \frac{2M_D + M_{D_s}}{3} = 1899.4 \text{ MeV}.
$$

Define
$$
\overline{M}^2 = \frac{2M_K^2 + M_\pi^2}{3} \approx 2B_0 \overline{m}
$$
, $\delta M^2 = 2(M_K^2 - M_\pi^2) \approx 2B_0(m_s - m_\ell)$.

To leading non-trivial order in ChPT neither charmonium masses nor $M_{\overline{D}}$ depend on δM^2 . Quantities in lattice units: **M**, **t**₀ etc. Then for $m_q \to m_{q, \text{ph}}$, $L \to \infty$, $a \to 0$:

$$
\mathbf{M}_{\psi}(\{m_q\}, L, a)\sqrt{\mathbf{t}_0(\{m_q\}, a)} \longrightarrow M_{\psi}\sqrt{t_{0,\text{ph}}}, \quad \mathbf{t_0}(\{m_q\}, a)a^2 \longrightarrow t_{0,\text{ph}} \quad \text{etc.}
$$

Use t_0^* , defined at the point where $M_\pi = M_K$ and $12 t_0^* M_\pi^2 = 1.11$, for the continuum limit extrapolation: a 2

$$
\frac{1}{\mathbf{t}_0^*}=\frac{d}{t_0^*}.
$$

Ideally, we would simulate at fixed values of the $O(a)$ improved coupling constant $g^2 = g_0^2[1 + b_g(g_0^2)a\overline{m}].$

Instead, we simulate at fixed $\beta = 6/g_0^2$ values, thereby changing the lattice spacing by an $O(a)$ effect between different points in the quark mass plane.

To cancel this, we must extrapolate dimensionless ratios of quantities, e.g., $\mathsf{M}_{1}/\mathsf{M}_{2}$ or $\mathsf{M}% _{2}/\mathsf{M}_{3}$ √ $\overline{\mathbf{t}_0}$.

Accounting for this, we carry out a global fit to the charmonium mass data of the type:

$$
\mathbf{M}_{\psi} = \frac{1}{\sqrt{\mathbf{t}_0}} \left\{ M_{\psi} \sqrt{t_{0,\text{ph}}} + c_c \left[\mathbf{M}_{\overline{D}} \sqrt{\mathbf{t}_0} - M_{\overline{D}} \sqrt{t_{0,\text{ph}}} \right] + \bar{c} \left[\overline{\mathbf{M}}^2 \mathbf{t}_0 - \overline{M}^2 t_{0,\text{ph}} \right] + \frac{c_a}{\mathbf{t}_0^*} + \dots \right\}.
$$

The fit parameter M_{ψ} is then the charmonium mass in GeV at the physical point. For each ensemble, two charm quark masses have been realized, bracketing the physical one.

Charm quark mass interpolation **(preliminary)**

$$
\mathbf{M}_{\psi} = \frac{1}{\sqrt{\mathbf{t}_0}} \left\{ M_{\psi} \sqrt{t_{0,\text{ph}}} + c_c \left[\mathbf{M}_{\overline{D}} \sqrt{\mathbf{t}_0} - M_{\overline{D}} \sqrt{t_{0,\text{ph}}} \right] + \bar{c} \left[\overline{\mathbf{M}}^2 \mathbf{t}_0 - \overline{M}^2 t_{0,\text{ph}} \right] + \frac{c_a}{\mathbf{t}_0^*} + \frac{c_{ac}}{\mathbf{t}_0^*} \mathbf{M}_{\overline{D}} \sqrt{\mathbf{t}_0} \right\}
$$

- $\bm{\mathsf{On}}$ each ensemble, correlations between $\bm{\mathsf{M}}_\pi$, $\bm{\mathsf{M}}_\mathcal{K}$ and the $\bm{\mathsf{M}}_{\overline{D}}$ and $\bm{\mathsf{M}}_\psi$ for the two charm quark masses are taken into account: 6×6 covariance matrices (5×5 for $m_s = m_\ell$).
- \bullet "x-errors" are included.
- \mathbf{t}_0 enters for each ensemble and \mathbf{t}_0^* for each β -value (priors with errors).
- $t_{0,\sf ph}^{-1/2}=1.362(8)$ GeV added as a prior.
- \bullet 5 fit parameters for now. In the future, we will systematically incorporate further effects, including a^3 , $M_{\overline{D}}^2$, $\overline{M}^2 \delta M^2$, δM^4 and other corrections.

1S fine structure splitting versus the D meson mass **(preliminary)**

Uncertainty of $t_{0,\text{ph}}$ was removed from the fit band and added to the experimental value.

Pion mass dependence of the *η*^c mass **(preliminary)**

Error smaller than that of $\sqrt{t_{0,\rm ph}}$ because charm quark mass set via $\mathbf{M}_{\overline{D}} = M_{\overline{D}}\sqrt{t_{0,\rm ph}/\mathbf{t}_0}.$ \sim cancellations: only the error of $M_{\eta_c} - 2M_{\overline{D}}$ approximately scales with that of $\sqrt{t_{0,\text{ph}}}$. Gunnar Bali for RQCD **[Charmonium on CLS ensembles](#page-0-0)** 12 / 17

The *η*^c mass: continuum limit **(preliminary)**

Fit band includes the uncertainty of $t_{0,\text{ph}}$. Correlated $\chi^2/\text{dof} = 23.3/25$.

The 1S fine structure splitting: continuum limit **(preliminary)**

Uncertainty of $t_{0,\text{ph}}$ only included in the "PDG" value. Correlated $\chi^2/\text{dof} = 64.1/25$. For the moment being, we inflate our error by $\sqrt{\chi^2/\mathsf{dof}}$. Extra fit parameters in the future.

The fine structure splitting in isoQCD. Connected two-point function only.

Experimental status

Summary and outlook

- From potential models and [HPQCD, 2005.01845], one would expect an increase of the 1S fine structure splitting by up to 2 MeV, due to electromagnetism.
- Given the fact that the decay width of the η_c is 30 MeV, the agreement with experiment may be surprising. Also $M_{n_c} = 2977(4)$ MeV (**preliminary**) vs. 2984 MeV (PDG).
- It is not straightforward to include annihilation diagrams: the axial anomaly may decrease the splitting. In addition: many decay channels and mixing with other flavour-singlet 0^{-+} states.
- Sea quark effects are very significant (as expected). The quenched result of 77(2)(6) MeV [QCD-TARO, hep-lat/0307004] went up to 114.3(5)(6) MeV (**preliminary**).

Future plans

- Include more ensembles and carry out more sophisticated fits and analyses of systematics.
- Compute masses and decay constants of other charmonium states.