Precision charmonium spectroscopy on CLS ensembles

Gunnar Bali, Sara Collins, Wolfgang Söldner, Sebastian Spiegel

Universität Regensburg

Lattice 2024, Liverpool

July 30, 2024

- Precision study of stable charmonia to set baseline for investigations of XYZ states.
- Compute low lying charmonium masses and decay constants from isoQCD quark-line connected correlation functions as a benchmark for future studies including electromagnetic and annihilation effects.
- $m_c \ll a^{-1}$: how big are cut-off effects? Are they bigger for the mass than for fine structure splittings $\sim m_c v$ or spin-independent splittings $\sim m_c v^2$?

For the moment being, we only study J = 0 and J = 1 charmonia (smeared interpolating operators without derivatives).

I will only show **very preliminary** results for a reduced set of observables $(M_{\eta_c} \text{ and } M_{J/\psi} - M_{\eta_c})$ on a reduced set of gauge ensembles.

CLS ensembles in the quark mass plane

Ensembles available for this analysis

Results presented here

Example for a mass determination

Ensemble E250

Definitions and input

Scale set via $t_{0,\text{ph}}^{-1/2} = 1.362(8) \text{ GeV}$ [RQCD, 2211.03744], obtained from m_{Ξ} .

Using this scale, we define the isoQCD physical quark mass point ({ m_q } \rightarrow { $m_{q,ph}$ }) as

$$M_{\pi} = 135 \,\mathrm{MeV}, \quad M_{\mathcal{K}} = 494 \,\mathrm{MeV}, \quad M_{\overline{D}} = rac{2M_D + M_{D_s}}{3} = 1899.4 \,\mathrm{MeV}.$$

Define
$$\overline{M}^2 = \frac{2M_K^2 + M_\pi^2}{3} \approx 2B_0\overline{m}, \quad \delta M^2 = 2\left(M_K^2 - M_\pi^2\right) \approx 2B_0(m_s - m_\ell).$$

To leading non-trivial order in ChPT neither charmonium masses nor $M_{\overline{D}}$ depend on δM^2 . Quantities in lattice units: **M**, **t**₀ etc. Then for $m_q \to m_{q,ph}$, $L \to \infty$, $a \to 0$:

$$\mathsf{M}_{\psi}(\{m_q\},L,a)\sqrt{\mathbf{t}_0(\{m_q\},a)} \longrightarrow M_{\psi}\sqrt{t_{0,\mathrm{ph}}}, \quad \mathbf{t}_{\mathbf{0}}(\{m_q\},a)a^2 \longrightarrow t_{0,\mathrm{ph}} \quad \mathrm{etc.}$$

Use t_0^* , defined at the point where $M_\pi = M_K$ and $12t_0^*M_\pi^2 = 1.11$, for the continuum limit extrapolation: $1 \quad a^2$

Ideally, we would simulate at fixed values of the O(a) improved coupling constant $g^2 = g_0^2 [1 + b_g(g_0^2)a\overline{m}].$

Instead, we simulate at fixed $\beta = 6/g_0^2$ values, thereby changing the lattice spacing by an O(a) effect between different points in the quark mass plane.

To cancel this, we must extrapolate dimensionless ratios of quantities, e.g., M_1/M_2 or $M_{\sqrt{t_0}}$.

Accounting for this, we carry out a global fit to the charmonium mass data of the type:

$$\mathbf{M}_{\psi} = \frac{1}{\sqrt{\mathbf{t}_0}} \left\{ M_{\psi} \sqrt{t_{0,\mathsf{ph}}} + c_c \left[\mathbf{M}_{\overline{D}} \sqrt{\mathbf{t}_0} - M_{\overline{D}} \sqrt{t_{0,\mathsf{ph}}} \right] + \overline{c} \left[\overline{\mathbf{M}}^2 \mathbf{t}_0 - \overline{M}^2 t_{0,\mathsf{ph}} \right] + \frac{c_a}{\mathbf{t}_0^*} + \dots \right\}.$$

The fit parameter M_{ψ} is then the charmonium mass in GeV at the physical point. For each ensemble, two charm quark masses have been realized, bracketing the physical one.

Charm quark mass interpolation (preliminary)

$$\mathbf{M}_{\psi} = \frac{1}{\sqrt{\mathbf{t}_0}} \left\{ M_{\psi} \sqrt{t_{0,\mathsf{ph}}} + c_{\boldsymbol{c}} \left[\mathbf{M}_{\overline{D}} \sqrt{\mathbf{t}_0} - M_{\overline{D}} \sqrt{t_{0,\mathsf{ph}}} \right] + \overline{\boldsymbol{c}} \left[\overline{\mathbf{M}}^2 \mathbf{t}_0 - \overline{M}^2 t_{0,\mathsf{ph}} \right] + \frac{c_{\boldsymbol{a}}}{\mathbf{t}_0^*} + \frac{c_{\boldsymbol{a}c}}{\mathbf{t}_0^*} \mathbf{M}_{\overline{D}} \sqrt{\mathbf{t}_0} \right\}$$

- On each ensemble, correlations between \mathbf{M}_{π} , \mathbf{M}_{K} and the $\mathbf{M}_{\overline{D}}$ and \mathbf{M}_{ψ} for the two charm quark masses are taken into account: 6×6 covariance matrices (5×5 for $m_s = m_{\ell}$).
- "*x*-errors" are included.
- \mathbf{t}_0 enters for each ensemble and \mathbf{t}_0^* for each β -value (priors with errors).
- $t_{0,ph}^{-1/2} = 1.362(8)$ GeV added as a prior.
- 5 fit parameters for now. In the future, we will systematically incorporate further effects, including a^3 , $\mathbf{M}_{\overline{D}}^2$, $\overline{\mathbf{M}}^2 \delta \mathbf{M}^2$, $\delta \mathbf{M}^4$ and other corrections.

1S fine structure splitting versus the D meson mass (preliminary)

Uncertainty of $t_{0,ph}$ was removed from the fit band and added to the experimental value.

Pion mass dependence of the η_c mass (preliminary)

Error smaller than that of $\sqrt{t_{0,\text{ph}}}$ because charm quark mass set via $\mathbf{M}_{\overline{D}} = M_{\overline{D}}\sqrt{t_{0,\text{ph}}/\mathbf{t}_0}$. \sim cancellations: only the error of $M_{\eta_c} - 2M_{\overline{D}}$ approximately scales with that of $\sqrt{t_{0,\text{ph}}}$.

Gunnar Bali for RQCD

Charmonium on CLS ensembles

The η_c mass: continuum limit (preliminary)

Fit band includes the uncertainty of $t_{0,ph}$. Correlated $\chi^2/dof = 23.3/25$.

The 1*S* fine structure splitting: continuum limit (preliminary)

Uncertainty of $t_{0,ph}$ only included in the "PDG" value. Correlated $\chi^2/dof = 64.1/25$. For the moment being, we inflate our error by $\sqrt{\chi^2/dof}$. Extra fit parameters in the future.

The fine structure splitting in isoQCD. Connected two-point function only.

Experimental status

Gunnar Bali for RQCD

Summary and outlook

- From potential models and [HPQCD, 2005.01845], one would expect an increase of the 1S fine structure splitting by up to 2 MeV, due to electromagnetism.
- Given the fact that the decay width of the η_c is 30 MeV, the agreement with experiment may be surprising. Also $M_{\eta_c} = 2977(4)$ MeV (preliminary) vs. 2984 MeV (PDG).
- It is not straightforward to include annihilation diagrams: the axial anomaly may decrease the splitting. In addition: many decay channels and mixing with other flavour-singlet 0^{-+} states.
- Sea quark effects are very significant (as expected). The quenched result of 77(2)(6) MeV [QCD-TARO, hep-lat/0307004] went up to 114.3(5)(6) MeV (preliminary).

Future plans

- Include more ensembles and carry out more sophisticated fits and analyses of systematics.
- Compute masses and decay constants of other charmonium states.