Predicting the spectrum and decay constants of positive parity heavy-strange mesons using domain wall fermions

> Forrest Guyton, Stefan Meinel (University of Arizona)

Lattice 2024: Liverpool, UK July 2024

Heavy-Strange Mesons

• D_s mesons in the quark model: $c\bar{s}$ and $\bar{c}s$ particles from the quark model -(more are known from experiment compared to the bottom sector)

$n^{2s+1}\ell_J$	JP	state
$1^{1}S_{0}$	0-	D_s^{\pm}
$1^{3}S_{1}$	1-	$D_s^{*\pm}$
$1^{3}P_{0}$	0+	$D^*_{s0}(2317)^{\pm}$
$1^{3}P_{1}$	1+	$D_{s1}(2460)^{\pm}$
1^1P_1	1+	$D_{s1}(2536)^{\pm}$

Table: from S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• D_s mesons in the quark model: $c\bar{s}$ and $\bar{c}s$ particles from the quark model -(more are known from experiment compared to the bottom sector)

$n^{2s+1}\ell_J$	JP	state
$1^{1}S_{0}$	0-	D_s^{\pm}
$1^{3}S_{1}$	1-	$D_s^{*\pm}$
$1^{3}P_{0}$	0+	$D_{s0}^{*}(2317)^{\pm}$
$1^{3}P_{1}$	1+	$D_{s1}(2460)^{\pm}$
1^1P_1	1+	$D_{s1}(2536)^{\pm}$

Below threshold narrow D_{s0}/D_{s1} states not expected in conventional quark model (e.g. [Godfrey, Kokoski; Phys. Rev. D 43, 1679 (1991)] predicts resonance above $D^{(*)}K$ threshold)

- 4 周 ト 4 ヨ ト 4 ヨ ト

Table: from S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

 The heavy quark sector is home to many exotic states to explore, with valance content beyond the conventional qq
q
quark model - here are some candidates for molecular states

D_{s0} and D_{s1} Mesons - Experimental Results

• Many D_s Mesons observed CHARMED, STRANGE MESONS ($C = \pm 1$, $S = \pm 1$) (including possibly non- $q \bar{q}$ $D_{-}^{+} = c \overline{s}, D_{-}^{-} = \overline{c} s$, similarly for $D_{+}^{*}s$ D⁺ Branching Fractions Leptonic Decays of Charged Pseudoscalar Mesons icates established particles

Mass D^{*}-K threshol $2504.46 \pm 0.14 MeV$ D.-(246f) 2459.5 ± 0.6364 D-K threshold $2363.34 \pm 0.5 MeV$ $2317.8 \pm 0.5 MeV$ D_s^* D_{\circ} $68.35 \pm 0.07 MeV$ J^P 0^+ 0^{-} 1 +Masses From: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022.

< ロ > < 同 > < 三 > < 三 >

 Previous lattice and light cone sum rule calculations of decay constants

Forrest Guyton, Stefan Meinel (University of Arizona) Positive Parity B_s/D_s Spectrum and Decay Constants 3/21

Less of the B_s Spectrum is Known From Experiment

- Red bars are states that have not been experimentally observed
- Heavy quark flavor symmetry: expect hyperfine splitting of D_s to be larger than B_s by factor of $\sim \frac{m_b}{m_c} \approx \frac{4.18 \text{GeV}}{1.27 \text{GeV}} \sim 3.3$
- Hints of these below threshold states [C. B. Lang, Daniel

Mohler, Sasa Prelovsek, R. M. Woloshyn;

arXiv:1501.01646]

 Less literature on decay constants and no prior lattice calculations for decay constants of positive parity states

Masses From: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022,

Molecular Mesons

- Weinstein+lsgur (1990): Level repulsion between S-wave 2-pseudoscalar scattering states and nearby strongly coupled scalar $q\bar{q}$ mesons \rightarrow drives scattering state to below threshold bound state [Barnes, Close, Lipkin; arXiv:hep-ph/0305025], [Weinstein, Isgur; Phys. Rev. D41, 2236 (1990)]
- Look for same quantum numbers as meson pair with small binding energy

Molecular Mesons

- Weinstein+lsgur (1990): Level repulsion between S-wave 2-pseudoscalar scattering states and nearby strongly coupled scalar $q\bar{q}$ mesons \rightarrow drives scattering state to below threshold bound state [Barnes, Close, Lipkin; arXiv:hep-ph/0305025], [Weinstein, Isgur; Phys. Rev. D41, 2236 (1990)]
- Look for same quantum numbers as meson pair with small binding energy
- A compositeness criterion e.g. [Weinberg; Phys. Rev. 137, B672(1965)] ansantz $|\Psi\rangle = \begin{pmatrix} \lambda |\psi_0\rangle \\ \chi(\vec{k}) |h_1h_2\rangle \end{pmatrix}$ Find χ , λ , and self energy in terms of same form factor \Rightarrow

T-matrix=effective range expansion with $\lambda \rightarrow 0 \Rightarrow$ constraints on ERE

・ 同 ト ・ ヨ ト ・ ヨ ト …

Molecular Mesons

- Weinstein+lsgur (1990): Level repulsion between S-wave 2-pseudoscalar scattering states and nearby strongly coupled scalar $q\bar{q}$ mesons \rightarrow drives scattering state to below threshold bound state [Barnes, Close, Lipkin; arXiv:hep-ph/0305025], [Weinstein, Isgur; Phys. Rev. D41, 2236 (1990)]
- Look for same quantum numbers as meson pair with small binding energy
- A compositeness criterion e.g. [Weinberg; Phys. Rev. 137, B672(1965)] ansantz $|\Psi\rangle = \begin{pmatrix} \lambda |\psi_0\rangle \\ \chi(\vec{k}) |h_1h_2\rangle \end{pmatrix}$ Find χ , λ , and self energy in terms of same form factor \Rightarrow

T-matrix=effective range expansion with $\lambda \rightarrow 0 \Rightarrow$ constraints on ERE

- Other related procedures [Morgan; Nucl. Phys. A543, 632(1992)], [Baru; arXiv:nucl-th/0410099]
- On the lattice: study ERE (good for near-threshold poles) from Lüscher's formula for p cot δ(p) from finite volume energy levels [Guo et al.; arXiv:1705.00141]

イロト 不得 トイヨト イヨト 二日

Positive Parity Mesons and Semileptonic Decays

- Current for b→ s transition has overlap with meson pairs (t₊ denotes kinematic threshold) → meson-meson scattering poles show up in form factors
- Factor out these poles for better convergence. e.g. in z expansion meson pole is mapped into the interior of the unit circle

 $\begin{array}{l} \mbox{Figure: Figure from: T. Blake, S. Meinel, M. Rahimi, D. \\ \mbox{van Dyk "Dispersive bounds for local form factors in} \\ \Lambda_b \rightarrow \Lambda \mbox{ transitions" arXiv:2205.06041 [hep-ph]} \end{array}$

$$f(q^2) = rac{1}{1-q^2/m_{
m pole}^{f_2}} \left[a_0^f + a_1^f z(q^2) + a_2^f (z(q^2))^2 + \mathcal{O}(z^3)
ight]$$

Positive Parity Mesons and Semileptonic Decays

- Current for b→ s transition has overlap with meson pairs (t₊ denotes kinematic threshold) → meson-meson scattering poles show up in form factors
- Factor out these poles for better convergence. e.g. in z expansion meson pole is mapped into the interior of the unit circle

 $\begin{array}{l} \mbox{Figure: Figure from: T. Blake, S. Meinel, M. Rahimi, D. \\ \mbox{van Dyk "Dispersive bounds for local form factors in} \\ \Lambda_b \rightarrow \Lambda \mbox{ transitions" arXiv:2205.06041 [hep-ph]} \end{array}$

$$f(q^2) = \frac{1}{1 - q^2/m_{\text{pole}}^{f_2}} \left[a_0^f + a_1^f z(q^2) + a_2^f (z(q^2))^2 + \mathcal{O}(z^3) \right]$$

• Consider derivatives of current twopoint functions χ in both a hadronic representation and with an OPE \rightarrow get dispersive bounds on form factors - need decay constants

$$\chi_{\Gamma}^{J}|_{OPE} \ge \chi_{\Gamma}^{J}|_{1pt} + \chi_{\Gamma}^{J}|_{2pt}, \quad \text{e.g.} \quad \chi_{V}^{J=0}(Q^{2})|_{1pt} = \frac{m_{B_{s,0}}^{2}f_{B_{s,0}}^{2}}{(m_{B_{s,0}}^{2} - Q^{2})^{n+1}}$$

- [G. S. Bali, Phys. Rev. D68, 071501 (2003), arXiv:hep-ph/0305209] Early unquenched calculations for D_{s0}^* with quark-antiquark interpolators extract only above threshold states
- [D. Mohler, C. Lang, L. Leskovec, S. Prelovsek, and R. Woloshyn, Phys. Rev. Lett. 111, 222001 (2013); arXiv:1308.3175] Explores the $D_{s0}^*(2317)$ and DK scattering on the lattice
 - Includes meson-meson interpolating fields and distallation method allows for these at both source and sink + variational method to extract energy levels
 - Lüscher's formula gives $a_0 < 0$, a bound state for DK scattering. $J^P = 0^+$ state found 37(17) MeV below threshold.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Previous Lattice Results

- [G.S. Bali, S. Collins, A. Cox, A. Schäfer, Phys.Rev.D 96 (2017) 7, 074501; arXiv1706.01247] Studies $D_{s0}^*(2317)$ and $D_{s1}(2460)$
 - Has an almost physical pion mass ensemble, using two quark and meson-meson operators with the stochastic sources and the variational method to extract energy levels
 - $f_{D_{s0}^*} \sim 114$ MeV, $f_{D_{s1}} \sim 194$ MeV and get $a_0 < 0$ in both channels
- [C.B. Lang, D. Mohler, S. Prelovsek, R.M. Woloshyn, Phys.Lett.B 750 (2015) 17-21; arXiv:1501.01646] Explores the positive parity B_s states predicts near threshold $J^P = 0^+, 1^+$ states
 - Uses stochastic distilation and variational method
 - Bound states at $m_{B_{s0}} = 5.711(13)(19)$ GeV and $m_{B_{s1}} = 5.750(17)(19)$ GeV

(4月) (日) (日) 日

Our Operator Basis

$$\begin{split} \Phi^{(1)} &= \bar{b}s \\ \Phi^{(2)} &= \bar{b}\gamma^{i}\nabla_{i}s \\ J_{V0} &= \sqrt{Z_{V}^{ss}Z_{V}^{bb}}\rho_{V_{0}}\left[\bar{b}\gamma_{0}s + \mathcal{O}(a)\text{-terms}\right] \\ \Phi^{(3)}(\vec{x},t) &= \sum_{\vec{y}} \Phi_{K}(\vec{x},t)\Phi_{B}(\vec{y},t) \text{ where } \Phi_{K} = \bar{u}\gamma_{5}s, \ \Phi_{B} = \bar{b}\gamma_{5}u \\ & \Phi^{(1)i} &= \bar{b}\gamma^{i}\gamma_{5}s \\ \Phi^{(2)i} &= \bar{b}\gamma_{5}\nabla^{i}s \\ J_{Ai} &= \sqrt{Z_{V}^{ss}Z_{V}^{bb}}\rho_{Ai}\left[\bar{b}\gamma_{i}\gamma_{5}s + \mathcal{O}(a)\text{-terms}\right] \\ \Phi^{(3)i}(\vec{x},t) &= \sum_{\vec{y}} \Phi_{K}(\vec{x},t)\Phi_{B^{*}}(\vec{y},t) \text{ with } \Phi_{K} = \bar{u}\gamma_{5}s, \ \Phi_{B^{*}} = \bar{b}\gamma^{i}u \\ \end{split}$$

Meson-Meson operator only at the source

• • = • • =

- Iwasaki gauge configurations from RBC/UKQCD Collaboration with 2+1 dynamical domain-wall fermions [Blum et al. (RBC/UKQCD Collaboration); arXiv:1411.7017], [Boyle et al. (RBC/UKQCD Collaboration); arXiv:1812.08791]
- We use domain wall fermions for light and strange quarks our light/strange propagators are pre-computed
- Anisotropic clover action for heavy quarks tuned with $B_s^{(*)}/D_s^{(*)}$ dispersion/hyperfine splitting [Aoki et al. (RBC/UKQCD

Collaboration); arXiv:1206.2554], [Meinel; arXiv:2309.01821]

Label	$N_s^3 \times N_t$	a [fm]	a^{-1} [GeV]	am _{u,d}	m_{π} [GeV]	$am_s^{(sea)}$	$am_s^{(val)}$	$N_{\rm ex}$	$N_{ m sl}$
C00078	$48^{3} \times 96$	0.114	1.7295(38)	0.00078	0.13917(35)	0.0362	0.0362	80	2560
C005LV	$32^{3} \times 64$	0.111	1.7848(50)	0.005	0.3398(12)	0.04	0.0323	186	5022
C005	$24^3 imes 64$	0.111	1.7848(50)	0.005	0.3398(12)	0.04	0.0323	311	4976
C01	$24^3 imes 64$	0.111	1.7848(50)	0.01	0.4312(13)	0.04	0.0323	283	9056
F004	$32^3 imes 64$	0.083	2.3833(86)	0.004	0.3036(14)	0.03	0.0248	251	4016
F006	$32^3 imes 64$	0.083	2.3833(86)	0.006	0.3607(16)	0.03	0.0248	223	3568
F1M	$48^3\times96$	0.073	2.708(10)	0.002144	0.2320(10)	0.02144	0.02217	113	3616

• 7 ensembles we use:

- $3.86 \lesssim m_{\pi}L \lesssim 6.09$ (only C00078 is < 4) keep finite volume errors under control. Note also the near-physical pion mass ensemble
- We use all mode averaging. $N_{\rm ex}$ and $N_{\rm sl}$ denote number of exact and sloppy samples available [Shintani, Arthur, Blum, Izubuchi, Jung, Lehner; arXiv:1402.0244]

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lattice Setup

- Positive parity particles projected to zero momentum
- Quarks in Φ-fields smeared with Gaussian smearing
- Currents renormalized via the mostly non-perturbative method of [El-Khadra, Kronfeld, Mackenzie, Ryan, Simone; arXiv:hep-ph/0101023], [Detmold, Lehner, Meinel; arXiv:1503.01421] where Z_V^{qq} computed nonperturbatively, residual matching factor ρ and $\mathcal{O}(a)$ improvement terms are calculated to 1-loop in lattice perturbation theory

$$J_{V0} = \sqrt{Z_V^{ss} Z_V^{bb}} \rho_{V_0} \left[\bar{s} \gamma_0 b + 2a \left(c_{V_0}^R \bar{s} \gamma_0 \gamma_j \overrightarrow{\nabla}_j b + c_{V_0}^L \bar{s} \overleftarrow{\nabla}_j \gamma_0 \gamma_j b \right) \right]$$

$$J_{Vi} = \sqrt{Z_V^{ss} Z_V^{bb}} \rho_{V_i} \left[\bar{s} \gamma_i b + 2a \left(c_{V_i}^R \bar{s} \gamma_i \gamma_j \overrightarrow{\nabla}_j b + c_{V_i}^L \bar{s} \overleftarrow{\nabla}_j \gamma_i \gamma_j b + d_{V_i}^R \bar{s} \overrightarrow{\nabla}_i b + d_{V_i}^L \bar{s} \overleftarrow{\nabla}_i b \right) \right]$$

$$J_{A0} = \sqrt{Z_V^{ss} Z_V^{bb}} \rho_{A_0} \left[\bar{s} \gamma_0 \gamma_5 b + 2a \left(c_{A_0}^R \bar{s} \gamma_0 \gamma_5 \gamma_j \overrightarrow{\nabla}_j b + c_{A_0}^L \bar{s} \overleftarrow{\nabla}_j \gamma_0 \gamma_5 \gamma_j b \right) \right]$$

$$J_{Ai} = \sqrt{Z_V^{ss} Z_V^{bb}} \rho_{A_i} \left[\bar{s} \gamma_i \gamma_5 b + 2a \left(c_{A_i}^R \bar{s} \gamma_i \gamma_5 \gamma_j \overrightarrow{\nabla}_j b + c_{A_i}^L \bar{s} \overleftarrow{\nabla}_j \gamma_0 \gamma_5 \gamma_j b \right) \right]$$

Sequential Source Propagators for Meson-Meson Operators

Figure: Constructing the sequential propagator $\Sigma(\vec{z}, t + t_s; \vec{x}_s, t_s) = \sum_{\vec{y}, y_0 = t + t_s} G_b(z, y) \gamma_5 G_u(y, x_s)$. C^{11} on the right for comparison

With $\Phi^{(3)}$ at source:

$$T(z,x) \equiv \sum_{\vec{y}} G_b(z;\vec{y},t_s)\gamma_5 G_u(\vec{y},t_s;x)$$

Solve for this propagator with a Dirac equation using light propagator as source $DT = \gamma_5 G_u$.

Derivative Source Propagators

Similarly with derivative operators at the source we need the combination of propagators and gauge links:

$$\tilde{G}_{bi}^{ab}(\vec{z}, t + t_{s}; \vec{x}_{s}, t_{s}) = \langle b(\vec{z}, t + t_{s})^{a} \bar{\psi}_{bi}'(\vec{x}_{s}, t_{s})^{b} \rangle \text{ where} \\ \bar{\psi}_{bi}'(\vec{x}_{s}, t_{s})^{b} = \sum_{y} \bar{b}(\vec{y}, t_{s})^{c} S_{i}^{(\vec{x}_{s})}(\vec{y})^{cb} \text{ with } S_{i}^{(\vec{x}_{s})}(\vec{y})^{cb} = (\nabla_{i}^{y})^{cf} \delta^{fb} \delta_{y^{0}t_{s}} \delta_{\vec{y}, \vec{x}_{s}}$$

$$\begin{split} \tilde{G}_{bi}^{ab}(\vec{z},t+t_{s};\vec{x}_{s},t_{s}) &= \sum_{y} \langle b(z)^{a} \bar{b}(\vec{y},t_{s})^{c} S_{i}^{(\vec{x}_{s})}(\vec{y})^{cb} \rangle = \\ &= \frac{1}{2a} \left(G_{b}^{ac}(\vec{z},t+t_{s};x_{s}-\hat{i}a,t_{s}) U_{i}(\vec{x}_{s}-\hat{i}a,t_{s})^{cb} - G_{b}^{ac}(\vec{z},t+t_{s};x_{s}+\hat{i}a,t_{s}) U_{i}^{\dagger}(\vec{x}_{s},t_{s})^{cb} \right) \end{split}$$

 \tilde{G}_i is just the propagator calculated with a derivative on the source.

$$D\tilde{G}_i(z,x) = \sum_{y} DG_b(z,y) S_i^{(x)}(y) = \sum_{y} \delta_{z,y} S_i^{(x)}(y) = \nabla_i^z \delta_{z^0,t_s} \delta_{\vec{z},\vec{x}_s}$$

Fitting

- All mode averaging is used
- Employ a 3-exponential simultaneous matrix fit for the matrix of correlators $\langle \phi_k \phi_l^{\dagger} \rangle$ ordered as in The slide exhibiting the operator basis

$$C_{ij} = A_i A_j \left[e^{-\exp(\tilde{E})t} + B_{1i} B_{1j} e^{-(\exp(\tilde{E}) + \exp(\tilde{\Delta E}_1))t} + B_{2i} B_{2j} e^{-(\exp(\tilde{E}) + \exp(\tilde{\Delta E}_1) + \exp(\tilde{\Delta E}_2))t} \right]$$

3 fit types: Unimproved current at both source and sink (4 × 3), improved current at sink (3 × 3), O(a) improvement terms at sink (3 × 3)

• Extract decay constant at
$$\vec{p} = 0$$
 : $f = A_J \sqrt{\frac{2}{\exp(\tilde{E})}}$

伺 ト イヨ ト イヨト

Example Fits - bottom $J^P = 1^+$

Figure: B_{s1} C005 effective mass plot

Forrest Guyton, Stefan Meinel (University of Arizona) Positive Parity B_s/D_s Spectrum and Decay Constants 16/21

Preliminary Results - Finite Volume Spectrum: Charm

Figure: D^{*}_{s0} spectrum

- Ground state from \sim 84 \pm 12 MeV to 128 \pm 11 MeV below threshold
- Compare with experiment \sim 40 MeV below threshold

- Ground state from 117 ± 4 MeV to 175 ± 4 MeV below threshold
- Near-physical pion mass ensemble: 126 ± 9 MeV below threshold
- Compare with experiment which predicts \sim 45 MeV

★ ∃ ► < ∃ ►</p>

Preliminary Results - Finite Volume Spectrum: Bottom

Figure: B_{c0}^* spectrum

- Ground state ranges from 71 ± 29 MeV to 192 ± 8 MeV below threshold (in some tension with Lang et al.)
- Compare with Lang et al. at 64(13)(19) MeV

C01

- Ground state ranges from 156 ± 17 MeV to 210 ± 10 MeV below threshold
- Both substantially more deeply bound ۰ than Lang et al. which predicts 71(17)(19) MeV

★ ∃ ► < ∃ ►</p>

Preliminary Results - Decay Constants: Charm

Figure: Averaged $D_{\rm s0}^{\rm s}$ decay constant ranges from 87 \pm 12 MeV to 145 \pm 16 MeV

Compare to Bali et al. estimate of \sim 114 MeV

Figure: $D_{\rm s1}$ decay constant range from 99 \pm 3 MeV to 142 \pm 5 MeV.

Compare to Bali et al. estimate of \sim 194 MeV

Preliminary Results - Decay Constants: Bottom

Figure: B_{s0}^* decay constants range from 151 \pm 6 MeV to 188 \pm 5 MeV

Reliable B_{s1} fits are still a work in progress

Forrest Guyton, Stefan Meinel (University of Arizona) Positive Parity B_s/D_s Spectrum and Decay Constants 20/21

Conclusion and Future Prospects

- Preliminary finite volume results indicate below-threshold B_s and D_s bound states in the $J^P = 0^+, 1^+$ channels, these are surprisingly > 100 MeV below threshold!
- Lattice extraction of positive parity D_s/B_s decay constants
- The multi-exponential fits are very unstable (especially C00078 w/ 80 AMA samples), very few fit ranges will converge
- While 4 quark operator at both source+sink would be helpful, it would require computing expensive light quark propagators

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conclusion and Future Prospects

- Preliminary finite volume results indicate below-threshold B_s and D_s bound states in the $J^P = 0^+, 1^+$ channels, these are surprisingly > 100 MeV below threshold!
- Lattice extraction of positive parity D_s/B_s decay constants
- The multi-exponential fits are very unstable (especially C00078 w/ 80 AMA samples), very few fit ranges will converge
- While 4 quark operator at both source+sink would be helpful, it would require computing expensive light quark propagators
- Akaike information criterion: average fits of different (t_{\min}, t_{\max}) weighted by $\chi^2/d.o.f.$ and number of data points to estimate systematics associated with fit range choice
- Lüscher's method to extract phase shifts in $D^{(*)}K / B^{(*)}K$ scattering and infinite volume bound state mass
- Chiral and continuum extrapolation + further estimate all sources of systematic uncertainty