Static-light meson spectroscopy with optimal distillation profiles

R. Höllwieser, F. Knechtli, T. Korzec, M. Peardon, <u>L. Struckmeier</u>, J.A. Urrea-Niño

41st Lattice Conference - Liverpool 2024

Introduction		
Motivation		

- ► Static-light = static limit of B-mesons → leading term in HQET (Heavy quark effective theory)
- ► Spectroscopy of static-light system with different angular momentum → hybrid string-breaking
- ► Useful to investigate excited state contamination in *B*-system (*B*π-system)

Therefore, our goal:

- Spectroscopy of static-light and static-charm system with and without angular momentum
- Investigate improved distillation for this setup
- Set first step towards hybrid string-breaking

Theory

Static-light correlators with improved distillation

Distillation [M. Peardon et al., Phys. Rev. D 80, 054506 (2009)]

- The columns of V(t) are the N_v lowest modes of the 3D gauge covariant Laplacian at time $t \to \nabla^2(t)v_i(t) = \lambda_i(t)v_i(t)$
- Static and light quark propagation:

 $D^{-1}(t_1, t_2) \to \tau = V^{\dagger}(t_1)D^{-1}(t_1, t_2)V(t_2)$ $\mathcal{P}(\vec{x}; t_1, t_2) \to \tau^{stat}(\vec{x}; t_1, t_2) = V^{\dagger}(\vec{x}; t_1) \mathcal{P}(\vec{x}; t_1, t_2) V(\vec{x}; t_2)$

 $\mathcal{P}(\vec{x}; t_1, t_2)$: temporal Wilson line

Improved Distillation [J. A. Urrea-Niño, F. Knechtli, T. Korzec & M. Peardon, Phys. Rev. D 106, 034501 (2022)]

 \blacktriangleright Contribution of each v_i is modulated by a profile function $\rho_i(t) = \rho(\lambda_i(t))$

Introduction
 Theory
 Measurements
 Conclusion and Outlook

 Local Static-light correlator

$$C(\vec{x}; t_2, t_1) =$$
 $- \left\langle \sum_{i,j} \rho_i(t_2) \rho_j(t_1) \tau_{ji}^{stat}(\vec{x}; t_1, t_2) \left(\mathsf{Tr}_{spin}[\Gamma \tau_{ij}(t_2, t_1)] \right) \right\rangle_{gauge}$

 $\blacktriangleright~\Gamma$ a 4×4 matrix that picks the needed spin components of τ

We can formulate a GEVP with 7×7 matrix using different Gaussian profiles.

Note: For derivative-based operators τ^{stat} involves derivatives of the v_i .

	Theory	
Results		

Measure static-light and static-charm spectrum in two different $N_f = 3 + 1$ QCD ensembles:

A1	A1h
$32^3 \times 96$	$32^3 \times 96$
$a\approx 0.05359{\rm fm}$	$a\approx 0.0690{\rm fm}$
$m_\pi \approx 420{\rm MeV}$	$m_\pi pprox 800 { m MeV}$
$N_{v} = 100$	$N_{v} = 200$
$N_{confg} = 4000$	$N_{confg} = 2000$

A1 was generated at the SU(3) flavor symmetric point. Ensembles have been generated using the action of [P. Fritzsch et al., J. High Energ. Phys. 2018, 25 (2018)], see [R. Höllwieser et al., Eur. Phys. J. C 80, 349 (2020)].

Comparison standard and improved distillation

• Left: Same number of eigenvectors ($N_v = 100$)

- $\rightarrow\,$ High supression of excited state contamination when using the optimal profiles
- Right: Different number of eigenvectors for standard distillation
 - $\rightarrow\,$ Improved distillation still shows less excited state contamination

Introduction

Theory

Measurements

Optimal meson profiles

- ightarrow The higher the state, the more structure in the optimal profile
- $\rightarrow\,$ Larger eigenvalues still have non-negligible contribution
- $\rightarrow\,$ Larger eigenvalues needed for excited states

IntroductionTheoryMeasurementsConclusion and OutlookStatic-light meson spectrum with improved distillation

Static-light meson spectrum

 $E_{B^*\pi}(|\vec{p}|)$: Energy of non-interacting B^* and π with momentum \vec{p} ($m_{B^*} = m_B$ due to heavy quark spin symmetry) \rightarrow Splittings show dependence on light quark masses \rightarrow A1: Levels are most likely radial excitations of B

 \rightarrow A1h: Level splittings are closer to non-interacting $B^*\pi$ states [O. Bär et al., Eur. Phys. J. C 83 8, 757 (2023)], [J. Foley et al., Phys. Rev. D 75, 094503 (2007)]

	Measurements	

Static-charm meson spectrum

Figure: A1 ensemble.

Figure: A1h ensemble.

- \to Level splittings of both ensembles agree due to subtraction of ground state static-charm quark mass \to dependence on charm mass cancels out
- $\rightarrow\,$ Splittings show only slight dependence on light quark masses

			Measuren	nents		
Mass	s-splittings					
	$\frac{\text{Splitt}}{1P_{1/2}} - \\ 1P_{3/2} - \\$	ing - 1 <i>S</i> 1 <i>P</i> _{1/2}	$m_{\pi} \approx 420$ 277.9(6.9) 130(12)) MeV) MeV MeV	$m_{\pi} \approx 800$ 369.9(5.6) 14.8(7.6)) MeV) MeV MeV
	2S -	1S	598.2(9.7)) MeV	571(13)	MeV
		Ta	able: Static-I	ight me	son.	
	Splitting	$m_{\pi} \approx$	$\pm420{\sf MeV}$	$m_{\pi} \approx$	$\approx 800~{ m MeV}$	PDG
_	$1P_{1/2} - 1S$	373.6	(4.2)MeV	347.5	(2.2)MeV	
	$1P_{3/2} - 1P_{1/2}$	27.4(1.5)MeV	16.2((1.4)MeV	
_	2S - 1S	521.8	(6.2)MeV	506.3	(4.3)MeV	$596.7(1.1)\mathrm{MeV}$
		Tal	ble: Static-cl	narm me	eson.	
	$\rightarrow 2S - 1S$ sta $\rightarrow 2S - 1S$ lar	tic-cha	rm splitting	; does r LS	not agree w	ith PDG value
	1D $1C$ in a second with m while $1D$ $1D$ decreases				docroscos	

 $\rightarrow 1P_{1/2} - 1S$ increases with m_{π} while $1P_{3/2} - 1P_{1/2}$ decreases \rightarrow Static-light splittings show higher dependence on m_{π}

		Conclusion and Outlook
с <u>і</u> і		

Conclusion and Outlook

- By using improved distillation we obtain enhanced plateaus of different radial and orbital excitations of the static-light and static-charm meson
- ▶ States on A1 \rightarrow radial excitations; States on A1h \rightarrow closer to $B^*\pi$ states
- Static-light results show higher dependence on light quark masses than static-charm results

Outlook:

- Identify $P_{3/2}$ states using two-derivative operators
- Include $B^*\pi$ interpolating operators
- Two static-light mesons which are relevant for hybrid string-breaking

Thank you for your attention!

Pruning

Start with 7×7 profile matrix. $\mbox{\bf Prune}$ the matrix to make it more numerically stable:

Perform Singular Value Decomposition (SVD)

 $C(t) = USV^{\dagger}$

with S a diagonal matrix containing the singular values, U contains the left singular vectors, V the right singular vectors. Project onto the singular vectors u_i corresponding to the N_p largest singular values at a reference time t_S where the pruning vectors are stable:

 $C_S(t)_{ij} = u_i^{\dagger}(t_S)C(t)u_j(t_S), \quad t \ge t_S \quad .$

Use this $N_p \times N_p$ matrix for the GEVP. [J. Balog et al., Phys. Rev. D 60, 094508], [F. Niedermayer et al., Nuclear Physics B 597, 413–450]

Multiparticle states

Subduction of pion representations for the smallest lattice momenta $|\vec{p}|$: [J. Foley et al., Phys. Rev. D 75, 094503 (2007)]

$ec{p}$	Irreducible content
(0,0,0)	A_1^-
(1, 0, 0)	$A_1^- \oplus E^- \oplus T_1^+$
(1, 1, 0)	$A_1^- \oplus E^- \oplus T_1^+ \oplus T_2^+ \oplus T_2^-$

 \rightarrow Obtain two-particle states by taking direct product of pion representation with G_1^+ Compare with energy of non-interacting two-particle state

$$E_{B^*\pi} \approx E_{sl} + E_{\pi} \quad \text{with}$$
$$\cosh\left(aE_{\pi}(p)\right) = \cosh\left(am_{\pi}\right) + \sum_{k=1}^{3} \left(1 - \cos\left(a\frac{2\pi|n_k|}{L}\right)\right)$$

Static-light meson spectrum

How does the static-light meson spectrum change when using different numbers of eigenvectors for the improved distillation? **Example:** G_1^+ with local operators

 $\rightarrow~$ 50EV spectrum only slightly noisier

 \rightarrow More eigenvalues necessary to obtain better resolution of higher excited states

