Static-light meson spectroscopy with optimal distillation profiles

R. Höllwieser, F. Knechtli, T. Korzec, M. Peardon, L. Struckmeier, J.A. Urrea-Ni˜no

41st Lattice Conference - Liverpool 2024

- ▶ Static-light = static limit of B-mesons \rightarrow leading term in HQET (Heavy quark effective theory)
- \triangleright Spectroscopy of static-light system with different angular momentum \rightarrow hybrid string-breaking
- \blacktriangleright Useful to investigate excited state contamination in B-system $(B\pi$ -system)

Therefore, our goal:

- ▶ Spectroscopy of static-light and static-charm system with and without angular momentum
- \blacktriangleright Investigate improved distillation for this setup
- \triangleright Set first step towards hybrid string-breaking

[Introduction](#page-1-0) [Theory](#page-2-0) [Measurements](#page-6-0) [Conclusion and Outlook](#page-12-0)

Static-light correlators with improved distillation

Distillation [M. Peardon et al., Phys. Rev. D 80, 054506 (2009)]

- \blacktriangleright The columns of $V(t)$ are the N_v lowest modes of the 3D gauge covariant Laplacian at time $t\to\nabla^2(t)v_i(t)=\lambda_i(t)v_i(t)$
- ▶ Static and light quark propagation:

 $D^{-1}(t_1, t_2) \to \tau = V^{\dagger}(t_1) D^{-1}(t_1, t_2) V(t_2)$ $\mathcal{P}(\vec{x};t_1,t_2) \rightarrow \tau^{stat}(\vec{x};t_1,t_2) = V^\dagger(\vec{x};t_1)\mathcal{P}(\vec{x};t_1,t_2)V(\vec{x};t_2)$

 $\mathcal{P}(\vec{x};t_1,t_2)$: temporal Wilson line

Improved Distillation [J. A. Urrea-Niño, F. Knechtli, T. Korzec & M. Peardon, Phys. Rev. D 106, 034501 (2022)]

 \blacktriangleright Contribution of each v_i is modulated by a profile function $\rho_i(t) = \rho(\lambda_i(t))$

Introduction

\nTheory

\nMeasurable

\nLocal Static-light correlator

\n
$$
C(\vec{x}; t_2, t_1) = -\left\langle \sum_{i,j} \rho_i(t_2) \rho_j(t_1) \tau_{ji}^{stat}(\vec{x}; t_1, t_2) \left(\text{Tr}_{spin}[\Gamma \tau_{ij}(t_2, t_1)] \right) \right\rangle_{gauge}
$$

 $\blacktriangleright \Gamma$ a 4×4 matrix that picks the needed spin components of τ

We can formulate a GEVP with 7×7 matrix using different Gaussian profiles.

Note: For derivative-based operators τ^{stat} involves derivatives of the v_i .

Measure static-light and static-charm spectrum in two different $N_f = 3 + 1$ QCD ensembles:

A1 was generated at the $SU(3)$ flavor symmetric point. Ensembles have been generated using the action of [P. Fritzsch et al., J. High Energ. Phys. 2018, 25 (2018)], See [R. Höllwieser et al., Eur. Phys. J. C 80 349 (2020)].

Comparison standard and improved distillation

 \blacktriangleright Left: Same number of eigenvectors $(N_v = 100)$

- \rightarrow High supression of excited state contamination when using the optimal profiles
- ▶ Right: Different number of eigenvectors for standard distillation
	- \rightarrow Improved distillation still shows less excited state contamination

Optimal meson profiles

- \rightarrow The higher the state, the more structure in the optimal profile
- \rightarrow Larger eigenvalues still have non-negligible contribution
- \rightarrow Larger eigenvalues needed for excited states

Static-light meson spectrum with improved distillation

Static-light meson spectrum

 $E_{B^*\pi}(|\vec p|)$: Energy of non-interacting B^* and π with momentum $\bar p$ $(m_{B^*} = m_B$ due to heavy quark spin symmetry)

- \rightarrow Splittings show dependence on light quark masses
- \rightarrow A1: Levels are most likely radial excitations of B
- \rightarrow A1h: Level splittings are closer to non-interacting $B^*\pi$ states,

[O. Bär et al., Eur. Phys. J. C 83 8, 757 (2023)], [J. Foley et al., Phys. Rev. D 75, 094503 (2007)]

Static-charm meson spectrum

Figure: A1 ensemble.

Figure: A1h ensemble.

- \rightarrow Level splittings of both ensembles agree due to subtraction of ground state static-charm quark mass \rightarrow dependence on charm mass cancels out
- \rightarrow Splittings show only slight dependence on light quark masses

 \rightarrow 1 $P_{1/2} - 1S$ increases with m_{π} while $1P_{3/2} - 1P_{1/2}$ decreases

 \rightarrow Static-light splittings show higher dependence on m_{π}

- ▶ By using improved distillation we obtain enhanced plateaus of different radial and orbital excitations of the static-light and static-charm meson
- ▶ States on A1 \rightarrow radial excitations; States on A1h \rightarrow closer to $B^* \pi$ states
- ▶ Static-light results show higher dependence on light quark masses than static-charm results

Outlook:

- \blacktriangleright Identify $P_{3/2}$ states using two-derivative operators
- \blacktriangleright Include $B^*\pi$ interpolating operators
- \blacktriangleright Two static-light mesons which are relevant for hybrid string-breaking

Thank you for your attention!

Pruning

Start with 7×7 profile matrix. Prune the matrix to make it more numerically stable:

Perform Singular Value Decomposition (SVD)

 $C(t) = USV^{\dagger}$

with S a diagonal matrix containing the singular values, U contains the left singular vectors, V the right singular vectors. Project onto the singular vectors u_i corresponding to the N_p largest singular values at a reference time t_S where the pruning vectors are stable:

> $C_S(t)_{ij} = u_i^{\dagger}$ $i_i(t_S)C(t)u_j(t_S), t \geq t_S$.

Use this $N_p \times N_p$ matrix for the GEVP. [J. Balog et al., Phys. Rev. D 60, 094508], [F. Niedermayer et al., Nuclear Physics B 597, 413–450]

Multiparticle states

Subduction of pion representations for the smallest lattice momenta $|\vec{v}|$: [J. Foley et al., Phys. Rev. D 75, 094503 (2007)]

 \rightarrow Obtain two-particle states by taking direct product of pion representation with G_1^+

Compare with energy of non-interacting two-particle state

$$
E_{B^*\pi} \approx E_{sl} + E_{\pi} \quad \text{with}
$$

$$
\cosh(aE_{\pi}(p)) = \cosh(am_{\pi}) + \sum_{k=1}^3 \left(1 - \cos\left(a\frac{2\pi|n_k|}{L}\right)\right)
$$

Static-light meson spectrum

How does the static-light meson spectrum change when using different numbers of eigenvectors for the improved distillation? **Example:** G_1^+ with local operators

 \rightarrow 50EV spectrum only slightly noisier

 \rightarrow More eigenvalues necessary to obtain better resolution of higher excited states

