Flavor mixing in charmonium and light mesons with optimal distillation profiles

J. A. Urrea-Niño, R. Höllwieser, J. Finkenrath, F. Knechtli, T. Korzec and M. Peardon

Lattice 2024, Liverpool, England, July 28 to August 3, 2024

Motivation

Goal: Calculate the low-lying meson spectrum in $N_f = 3 + 1$ QCD. This includes different states related to $SU(3)_F$:

- Flavor-singlet: f_0 , η_c , glueballs, 2-pion states, etc...
- Flavor-octet: π , a_0 , octet 2-pion states, etc...
- → Experimental studies of glueball candidates and other exotics in the light and charmonium regions can benefit from insights on the composition of these states.
- → Tuning of masses in simulations is useful to study convenient setups, e.g heavy π 's to raise the threshold of scalar glueball decay into $\pi\pi$.

This talk: Mixing between different kinds of flavor-singlet scalar operators.

Do light meson, charmonium, gluonic and 2-pion operators talk to each other?

Strategy

Common approach:

- Study light meson states with $\bar{l}(t)\Gamma l(t)$ operators including disconnected correlations.
- Study charmonium states with $\bar{c}(t)\Gamma c(t)$ operators **disregarding** charm disconnected correlations.
- !!! Mixing is artificially eliminated.

Since $\mathcal{O}_c = \bar{c}\Gamma c$ and $\mathcal{O}_l = \bar{u}\Gamma u + \bar{d}\Gamma d + \bar{s}\Gamma s$ are in the same symmetry channel on the lattice they create states with **non-zero overlap** onto the same set of energy eigenstates $|n\rangle$.

E.g The ground state of the flavor-singlet 0^{++} channel is f_0 , not χ_{c0} .

$$C_{l}(t) \stackrel{t \to \infty}{\approx} |\langle f_{0}| \mathcal{O}_{l} |\Omega \rangle|^{2} e^{-E_{f_{0}}t}$$

$$C_{c}(t) \stackrel{t \to \infty}{\approx} |\langle f_{0}| \mathcal{O}_{c} |\Omega \rangle|^{2} e^{-E_{f_{0}}t} \neq |\langle \chi_{c0}| \mathcal{O}_{c} |\Omega \rangle|^{2} e^{-E_{\chi_{c0}}t}$$

If we account for the mixing we do not need to rely on possible fake plateaus, e.g $|\langle \chi_{c0} | \mathcal{O}_c | \Omega \rangle| >> |\langle f_0 | \mathcal{O}_c | \Omega \rangle| > 0$

We need a correlation matrix which accounts for all types of operators and their possible mixing:

• $O_g(t)$: gluonic operators, e.g built from Wilson loops. • $O_{2\pi}(t)$: flavor-singlet 2-pion operators at zero total momentum. $\rightarrow \langle O_i(t)\overline{O}_j(0) \rangle \neq 0$ for $i \neq j$ means **no decoupling** between operators.

We solve a GEVP M. Lüscher & U. Wolff, Nuclear Physics B 339, 222–252, B. Blossier et al. Journal of High Energy Physics 2009, 094–094:

$$C(t)v_n(t,t_0) = \rho_n(t,t_0)C(t_0)v_n(t,t_0)$$

Overlaps:

 $\langle n | \mathcal{O}_i | \Omega \rangle \propto [C(t_0)v_n(t,t_0)]_i$

Noise in vectors and choice of t_0 play a large role here. J.J. Dudek et al.

Phys. Rev. D 77, 034501 (2008)

Building the correlation matrix

Improved Distillation: Control the contribution from each 3D Laplacian eigenvector. M. Peardon et al. Phys. Rev. D 80, 054506 (2009), J. A. Urrea-Niño, F. Knechtli, T. Korzec & M. Peardon. Phys. Rev. D 106, 034501 (2022) Flavor-singlet channel:

- 1-particle: connected + disconnected 2-point function.
- 2-particle: $8 \otimes 8 = \mathbf{1} \oplus 8 \oplus 8' \oplus 10 \oplus \overline{10} \oplus 27$
 - ► SU(3) CG-coefficients: How to combine products of |8, Y, I, I_z to obtain |1, 0, 0, 0⟩? P. McNamee & F. Chillton, Rev. Mod. Phys 36 (1964)
 - Wick contractions: 2-point function involves 4 perambulators connecting sink and source times in few different diagrams.
 - Spatial momentum: Non-zero relative momentum of mesons requires further projection considerations in corresponding momentum little group.

Advantages:

- $\checkmark\,$ Same perambulators/elementals are used for all correlations.
- ✓ Singlet 2-pion diagrams are also useful for other flavor configurations, e.g octet.
- $\checkmark~$ 1- and 2-particle loops are reusable.
- ✓ Gluonic operators are easy to include.

	\mathcal{O}_l	\mathcal{O}_{c}	$O_{2\pi}$	C	\mathcal{D}_{g}
\mathcal{O}_l		00		0	⊊ €¢
\mathcal{O}_c	-		00	0	Se so
$\mathcal{O}_{2\pi}$	-	-		0	⊊ &
\mathcal{O}_{g}	-	-	-	• &	Se So

Disconnected correlations are very necessary for flavor-singlets but have large statistical errors.

- We use a basis of different distillation profiles in the 1-particle blocks to saturate the spectrum ($\Gamma = \mathbb{I}$).
- 2-pion operator with standard distillation for now...

$N_f = 3 + 1$ ensembles

Wilson fermion action with non-perturbatively determined clover improvement + Lüscher-Weisz gauge action. R. Höllwieser et al. Eur. Phys. J. C 80, 349. P. Fritzsch et al. J. High Energ. Phys. 2018, 25 (2018)

A1	A1h
96×32^3	96×32^3
a pprox 0.054 fm	a pprox 0.069 fm
$m_{\pi} \approx 420 \text{ MeV}$	$m_{\pi} \approx 800 \text{ MeV}$
$N_v^{light} = 100$	$N_v^{light} = 200$
$N_v^{charm} = 200$	$N_v^{charm} = 200$

Control over decay thresholds:

- Quenched 0^{++} glueball \approx 1800 MeV
- A1: Glueball $\rightarrow \pi\pi$, $\pi\pi\pi\pi$
- A1h: Glueball $\rightarrow \pi\pi$

0^{++} flavor-singlet correlation matrix at t = a

$C_{ij}(t) \to C_{ij}(t)/\sqrt{C_{ii}(a)C_{jj}(a)}.$

Figure: A1 ensemble

Figure: A1h ensemble

All operators "talk" to each other to some degree.

- O_g: Sum of Laplacian eigenvalues. C. Morningstar et al. Phys. Rev. D 88, 014511
- O_{l/c}: From SVD pruning of sub-blocks. J. Balog et al., Phys. Rev. D 60, 094508, F. Niedermayer et al., Nuclear Physics B 597, 413–450

J. A. Urrea-Niño, Flavor mixing in charmonium and light mesons with optimal distillation profiles

0⁺⁺ single-particle operator mixing in A1

Charmonium operators alone see a light state.

► Including *O*_g does not change the low-lying spectrum. Similar to R. Brett et al. 1909.07306.

0^{++} full operator mixing in A1

▶ 10 operators: 3 × O_c, 5 × O_l, O_{2π} and O_g.
 ▶ 2-pion operator introduces an additional state.

0⁺⁺ single-particle operator mixing in A1h

Charmonium operators alone see a light state.

lncluding \mathcal{O}_g does not change the low-lying spectrum.

0^{++} full operator mixing in A1h

- 10 operators: 3 × O_c, 5 × O_l, O_{2π} and O_g.
 2-pion operator introduces an additional state.
- J. A. Urrea-Niño, Flavor mixing in charmonium and light mesons with optimal distillation profiles

Conclusions and Outlook

- All flavor-singlet operators "talk" to each other and flavor-mixing off-diagonals are non-negligible.
- Mixing of 2-pion operator with one-particle states is the smallest and yields additional state very close to quenched 0⁺⁺ glueball mass at both pion masses.
- •• Disconnected correlation in charmonium **introduces** a state in the GEVP in the region of light mesons for both pion masses.
- Statistical noise from disconnected correlations is a major problem.

Future work:

- $\circ~$ Different choices of Γ to better sample radial excitations.
- More 2-pion operators: bact-to-back momentum + profiles in a larger volume.
- Better sampling methods for disconnected pieces, e.g multi-level sampling 2406.12656. See talk by L. Barca on Thursday!
- $\circ \circ \circ ~$ Lüscher's method at different volumes to study scattering.

Thank you for your attention!

We start from a $N\times N$ correlation matrix C(t) and perform an SVD at a reference time t_s

$$C(t_s) = UDU^{\dagger},$$

which is symmetric thanks to hermiticity of C(t). We then define a pruned $M \times M$, M < N, correlation matrix $\tilde{C}(t)$ as

 $\tilde{C}_{ij}(t) = u_i^{\dagger} C(t) u_j$

by projecting onto the singular vectors corresponding to the M largest singular vectors. $\tilde{C}(t)$ is not only smaller but better conditioned and less affected by statistical noise than C(t). J. Balog et al., Phys. Rev. D 60, 094508, F. Niedermayer et al., Nuclear Physics B 597, 413–450

$\pi\pi$ Diagrams and their error in A1

Light state with charmonium operators in A1

Masses extracted from **diagonal** entries of the charmonium-only correlation matrix.

Both choices of basis see a lighter state but we need light meson operators to clearly resolve it and other surrounding ones.

