Flavor mixing in charmonium and light mesons with optimal distillation profiles

J. A. Urrea-Niño, R. Höllwieser, J. Finkenrath, F. Knechtli, T. Korzec and M. Peardon

Lattice 2024, Liverpool, England, July 28 to August 3, 2024

Motivation

Goal: Calculate the low-lying meson spectrum in $N_f = 3 + 1$ QCD. This includes different states related to $SU(3)_F$:

- \blacktriangleright Flavor-singlet: f_0 , η_c , glueballs, 2-pion states, etc...
- **Flavor-octet:** π , a_0 , octet 2-pion states, etc...
- \rightarrow Experimental studies of glueball candidates and other exotics in the light and charmonium regions can benefit from insights on the composition of these states.
- \rightarrow Tuning of masses in simulations is useful to study convenient setups, e.g heavy π 's to raise the threshold of scalar glueball decay into $\pi\pi$.

This talk: Mixing between different kinds of flavor-singlet scalar operators.

▶ Do light meson, charmonium, gluonic and 2-pion operators talk to each other?

Strategy

Common approach:

- ▶ Study light meson states with $\overline{l}(t)\Gamma l(t)$ operators including disconnected correlations.
- \blacktriangleright Study charmonium states with $\bar{c}(t)\Gamma c(t)$ operators **disregarding** charm disconnected correlations.
- !!! Mixing is artificially **eliminated**.

Since $\mathcal{O}_c = \bar{c}\Gamma c$ and $\mathcal{O}_l = \bar{u}\Gamma u + \bar{d}\Gamma d + \bar{s}\Gamma s$ are in the same symmetry channel on the lattice they create states with **non-zero overlap** onto the same set of energy eigenstates $|n\rangle$.

E.g The ground state of the flavor-singlet 0^{++} channel is f_0 , not χ_{c0} .

$$
C_l(t) \stackrel{t \to \infty}{\approx} |\langle f_0 | \mathcal{O}_l | \Omega \rangle|^2 e^{-E_{f_0}t}
$$

$$
C_c(t) \stackrel{t \to \infty}{\approx} |\langle f_0 | \mathcal{O}_c | \Omega \rangle|^2 e^{-E_{f_0}t} \neq |\langle \chi_{c0} | \mathcal{O}_c | \Omega \rangle|^2 e^{-E_{\chi_{c0}}t}
$$

If we account for the mixing we do not need to rely on possible fake plateaus, e.g $|\langle \chi_{c0} | \mathcal{O}_c | \Omega \rangle| \gg |\langle f_0 | \mathcal{O}_c | \Omega \rangle| > 0$

We need a correlation matrix which accounts for all types of operators and their possible mixing:

 \blacktriangleright $O_a(t)$: gluonic operators, e.g built from Wilson loops. \blacktriangleright $O_{2\pi}(t)$: flavor-singlet 2-pion operators at zero total momentum. $\rightarrow \left\langle \mathcal{O}_i(t)\bar{\mathcal{O}}_j(0) \right\rangle \neq 0$ for $i \neq j$ means **no decoupling** between operators.

We solve a GEVP M. Lüscher & U. Wolff, Nuclear Physics B 339, 222–252, B. Blossier et al. Journal of High Energy Physics 2009, 094–094:

$$
C(t)v_n(t, t_0) = \rho_n(t, t_0)C(t_0)v_n(t, t_0)
$$

Overlaps:

 $\langle n | \mathcal{O}_i | \Omega \rangle \propto [C(t_0)v_n(t,t_0)]_i$

Noise in vectors and choice of t_0 play a large role here. J.J. Dudek et al.

Phys. Rev. D 77, 034501 (2008)

Building the correlation matrix

Improved Distillation: Control the contribution from each 3D Laplacian eigenvector. M. Peardon et al. Phys. Rev. D 80, 054506 (2009), J. A. Urrea-Niño, F. Knechtli, T. Korzec & M. Peardon. Phys. Rev. D 106, 034501 (2022) **Flavor-singlet channel:**

- \blacktriangleright 1-particle: connected + disconnected 2-point function.
- **► 2-particle:** $8 \otimes 8 = 1 \oplus 8 \oplus 8' \oplus 10 \oplus 10 \oplus 27$
	- ▶ **SU(3) CG-coefficients:** How to combine products of $(8, Y, I, I_z)$ to obtain $|1, 0, 0, 0\rangle$? P. McNamee & F. Chillton, Rev. Mod. Phys 36 (1964)
	- ▶ Wick contractions: 2-point function involves 4 perambulators connecting sink and source times in few different diagrams.
	- ▶ **Spatial momentum:** Non-zero relative momentum of mesons requires further projection considerations in corresponding momentum little group.

Advantages:

- $\sqrt{\ }$ Same perambulators/elementals are used for all correlations.
- ✓ Singlet 2-pion diagrams are also useful for other flavor configurations, e.g octet.
- $\sqrt{1}$ 1- and 2-particle loops are reusable.
- Gluonic operators are easy to include.

Disconnected correlations are very **necessary** for flavor-singlets but have **large** statistical errors.

- \triangleright We use a basis of different distillation profiles in the 1-particle blocks to saturate the spectrum ($\Gamma = \mathbb{I}$).
- ▶ 2-pion operator with standard distillation *for now*...

$N_f = 3 + 1$ ensembles

Wilson fermion action with non-perturbatively determined clover improvement + Lüscher-Weisz gauge action. R. Höllwieser et al. Eur. Phys. J. C 80, 349. P. Fritzsch et al. J. High Energ. Phys. 2018, 25 (2018)

Control over decay thresholds:

- ▶ Quenched 0^{++} glueball \approx 1800 MeV
- A1: Glueball $\rightarrow \pi\pi, \pi\pi\pi\pi$
- A1h: Glueball $\rightarrow \pi\pi$

0^{++} flavor-singlet correlation matrix at $t=a$

$C_{ij}(t) \rightarrow C_{ij}(t)/\sqrt{C_{ii}(a)C_{jj}(a)}$.

Figure: A1 ensemble

All operators "talk" to each other to some degree.

- \triangleright \mathcal{O}_q : Sum of Laplacian eigenvalues. C. Morningstar et al. Phys. Rev. D 88, 014511
- \triangleright $\mathcal{O}_{l/c}$: From SVD pruning of sub-blocks. J. Balog et al., Phys. Rev. D 60,

094508, F. Niedermayer et al., Nuclear Physics B 597, 413–450

J. A. Urrea-Niño, *[Flavor mixing in charmonium and light mesons with optimal distillation profiles](#page-0-0)* 7/13

$\overline{0}$ single-particle operator mixing in A1

- Charmonium operators alone see a light state.
- \blacktriangleright Including \mathcal{O}_q does not change the low-lying spectrum. Similar to R. Brett et al. 1909.07306.

0^{++} full operator mixing in A1

▶ 10 operators: $3 \times \mathcal{O}_c$, $5 \times \mathcal{O}_l$, $\mathcal{O}_{2\pi}$ and \mathcal{O}_g . ▶ 2-pion operator introduces an additional state.

$\overline{0}$ single-particle operator mixing in A1h

▶ Charmonium operators alone see a light state.

Including O_q does not change the low-lying spectrum.

0^{++} full operator mixing in A1h

▶ 10 operators: $3 \times \mathcal{O}_c$, $5 \times \mathcal{O}_l$, $\mathcal{O}_{2\pi}$ and \mathcal{O}_g . ▶ 2-pion operator introduces an additional state.

Conclusions and Outlook

- ▶ All flavor-singlet operators "talk" to each other and flavor-mixing off-diagonals are **non-negligible**.
- ▶ Mixing of 2-pion operator with one-particle states is the **smallest** and yields additional state very close to quenched 0^{++} glueball mass at both pion masses.
- ◦◦ Disconnected correlation in charmonium **introduces** a state in the GEVP in the region of light mesons for both pion masses.
- ◦◦ Statistical noise from disconnected correlations is a major problem.

Future work:

- \circ Different choices of Γ to better sample radial excitations.
- More 2-pion operators: bact-to-back momentum + profiles in a larger volume.
- ◦◦ Better sampling methods for disconnected pieces, e.g multi-level sampling 2406.12656. See talk by L. Barca on Thursday!
- ◦ Lüscher's method at different volumes to study scattering.

Thank you for your attention!

We start from a $N \times N$ correlation matrix $C(t)$ and perform an SVD at a reference time t_s

$$
C(t_s) = UDU^{\dagger},
$$

which is symmetric thanks to hermiticity of $C(t)$. We then define a pruned $M \times M$, $M < N$, correlation matrix $\ddot{C}(t)$ as

 $\tilde{C}_{ij}(t) = u_i^{\dagger} C(t) u_j$

by projecting onto the singular vectors corresponding to the M largest singular vectors. $C(t)$ is not only smaller but better conditioned and less affected by statistical noise than $C(t)$. J. Balog et al., Phys. Rev. D 60, 094508, F. Niedermayer et al., Nuclear Physics B 597, 413–450

$\pi\pi$ Diagrams and their error in A1

Light state with charmonium operators in A1

Masses extracted from **diagonal** entries of the charmonium-only correlation matrix.

Both choices of basis see a lighter state but we need light meson operators to clearly resolve it and other surrounding ones.