Status report on the hadronic light-by-light contribution to the muon g-2 using twisted-mass fermions

Nikolaos Kalntis with Gurtej Kanwar, Marcus Petschlies, Simone Romiti and Urs Wenger on behalf of the ETM Collaboration

Liverpool, July 29th, 2024

UNIVERSITÄT BERN

Lattice 2024

Introduction

- g-2 puzzle: Theoretical uncertainty has to be reduced.
- Two hadronic diagrams contribute the most to the theoretical uncertainty.

• HVP @ $O(\alpha_{OED}^2)$.

Introduction

- g-2 puzzle: Theoretical uncertainty has to be reduced.
- Two hadronic diagrams contribute the most to the theoretical uncertainty.

- Difficult to calculate (non-perturbative).
- Two main approaches:

(1) Dispersion relations: Data-driven approach. (2) Lattice QCD: Calculations on a finite lattice.

Hadronic Light-by-Light (HLbL)

We focus on the full lattice QCD calculation of HLbL (not only PS pole contributions).

- Difficult calculation: 4-pt function
- Sub-dominant contribution to the theoretical error @ $\mathcal{O}(\alpha_{OED}^3)$.
- Good agreement between lattice and dispersive.
- Uncertainty has to be significantly reduced.

 \bullet

RBC-UKQCD (2023)

We follow the Mainz approach

$$a_{\mu}^{\mathrm{HLbL}} = rac{me^{6}}{3} \int_{x,y} \bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\nu\mu\nu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\nu\mu\nu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\nu\mu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\nu\mu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\nu\mu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\nu\mu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\nu\mu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\mu\nu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\mu\nu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\mu\nu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\mu\nu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\mu\nu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\mu\mu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\mu\mu\sigma}(x,y) \, i\widehat{\Pi}_{\rho;\mu\mu\mu\sigma}($$

y)

• We follow the Mainz approach

$$a_{\mu}^{\mathrm{HLbL}} = rac{me^{6}}{3} \int_{x,y} \bar{\mathcal{L}}_{[
ho,\sigma];\mu
u\lambda}(x,y) i\widehat{\Pi}_{
ho;\mu
u\lambda\sigma}(x,y)$$

- QED kernel $\overline{\mathscr{S}}$: continuum and infinite volume.
- 4-pt function $\hat{\Pi}$: discrete lattice and finite volume.

• We follow the Mainz approach

$$a_{\mu}^{\mathrm{HLbL}} = rac{me^{6}}{3} \int_{x,y} \bar{\mathcal{L}}_{[
ho,\sigma];\mu
u\lambda}(x,y) i\widehat{\Pi}_{
ho;\mu
u\lambda\sigma}(x,y)$$

- QED kernel $\overline{\mathscr{S}}$: continuum and infinite volume.
- 4-pt function $\hat{\Pi}$: discrete lattice and finite volume.

$$a_{\mu}^{HLbL}(|y|_{max}) = \int_{0}^{y_{max}} d|y|f(|y|), \quad f(|y|) = \frac{m_{\mu}e^{6}}{3} 2\pi^{2}|y|^{3} \int_{x} \bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \ i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y).$$

• We follow the Mainz approach

$$a_{\mu}^{\mathrm{HLbL}} = rac{me^{6}}{3} \int_{x,y} \bar{\mathcal{L}}_{[
ho,\sigma];\mu
u\lambda}(x,y) \, i\widehat{\Pi}_{
ho;\mu
u\lambda\sigma}(x,y)$$

- QED kernel $\overline{\mathscr{I}}$: continuum and infinite volume.
- 4-pt function $\hat{\Pi}$: discrete lattice and finite volume.

$$a_{\mu}^{HLbL}(|y|_{max}) = \int_{0}^{y_{max}} d|y|f(|y|), \quad f(|y|) = \frac{m_{\mu}e^{6}}{3} 2\pi^{2}|y|^{3} \int_{x} \bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \ i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y).$$

- volume limit).
- We work with two kernels: Kernel 3 and Kernel $\Lambda = 0.4$ (as defined by Mainz).

• Kernel freedom: $\bar{\mathscr{I}} \to \bar{\mathscr{I}}$ + anything that vanishes upon integration (in the continuum and infinite

• For the HLbL contribution there are 5 distinct topologies (5 classes of Wick contractions).

Topologies

Mainz (2021)

ullet

• For the HLbL contribution there are 5 distinct topologies (5 classes of Wick contractions).

• We focus on the fully-connected and 2+2 (dominant ones).

Topologies

Mainz (2021)

 \bullet

Ensemble details and runs

point, generated by the Extended Twisted Mass Collaboration (ETMC).

Ensemble	$\mid L^3 \cdot T/a^4$	$M_{\pi} \ [MeV]$	$ a \ [fm]$	$\mid L \; [fm]$	$M_{\pi} \cdot L$	Z_V	Z_A
cB211.072.64 (cB64)	$64^3 \cdot 128$	140.2(2)	0.07961(13)	5.09	3.62	0.706379(24)	0.74294(24)
cC211.060.80 (cC80)	$80^3 \cdot 160$	136.7(2)	0.06821(12)	5.46	3.78	0.725404(19)	0.75830(16)
cD211.054.96 (cD96)	$96^3 \cdot 192$	140.8(2)	0.05692(10)	5.46	3.90	0.744108(12)	0.77395(12)

We use twisted-mass fermions on 2+1+1 gauge ensembles at the physical

Ensemble details and runs

point, generated by the Extended Twisted Mass Collaboration (ETMC).

Ensemble	$\mid L^3 \cdot T/a^4$	$M_{\pi} \ [MeV]$	$a \ [fm]$	$\mid L \; [fm]$	$M_{\pi} \cdot L$	Z_V	Z_A
cB211.072.64 (cB64)	$64^3 \cdot 128$	140.2(2)	0.07961(13)	5.09	3.62	0.706379(24)	0.74294(24)
cC211.060.80 (cC80)	$80^3 \cdot 160$	136.7(2)	0.06821(12)	5.46	3.78	0.725404(19)	0.75830(16)
cD211.054.96 (cD96)	$96^3 \cdot 192$	140.8(2)	0.05692(10)	5.46	3.90	0.744108(12)	0.77395(12)

- Charm, Strange quarks: All three ensembles.
- Light quarks: cB64 so far.
- Kernel $\Lambda = 0.4$.
- Note: The results presented are preliminary.

We use twisted-mass fermions on 2+1+1 gauge ensembles at the physical

We work with two kernels (estimate of FVE and lattice artefacts): Kernel 3 and

Charm connected: preliminary results

Charm connected: preliminary results

Continuum extrapolation for charm connected

- Linear fit in a^2 ulletdescribes the extrapolation accurately (expected for twisted-mass).
- Statistical error is lacksquareunder control.
- Systematic error to be included (in progress).

Strange connected: preliminary results

Strange connected: preliminary results

- Similar order of magnitude to lacksquarecharm-connected.
- Linear fit in a² seems to lacksquaredescribe the extrapolation accurately.
- Discretisation effects smaller compared to charm-connected.
- Plan to run more configurations \bullet for cC80 and cD96.
- Statistical error is under control.
- Systematic error to be included (in progress).

Light connected: preliminary results

- Dominant contribution to HLbL.
- Good quality for the signal up to ~1.5 fm.
- After ~1.5 fm it becomes noisy: How can we deal with it?
 - Model the tail with the PS pole contributions (in progress); also better estimation of FVE.
 - Use a more general model to replace the data of the tail.

Light connected: preliminary results

- One such model: $A |y|^3 e^{-B|y|}$ (Mainz 2021).
- Good description of f(|y|) after the peak.
- Replace the data after 1.9 fm with the model.
- Adds a systematic error that needs to be calculated (in progress).
- For both kernels ~95% of the signal comes from the pure data.

- Light-Light 2+2: preliminary results
 - Light-Light: Dominant contribution to α_{μ}^{disc} .
 - Difficult to calculate (very noisy).
 - Kernel 3: low statistics (to be increased).
 - Kernel $\Lambda = 0.4$: good signal up to ~1.2 fm.
 - Next steps:
 - Increase statistics after ~ 1 fm and \bullet extend data to larger distances;
 - Extend analysis to light-strange and \bullet strange-strange (in progress).

Conclusions and future directions

Charm and Strange connected	Light connected	Light-Light 2+2	Light-Strange and Strange-Strange 2+2
 Good signal for both kernels. Statistical error under control. Continuum extrapolation done. Systematic error to be added. 	 Good signal for both kernels up to ~1.5 fm. Large distances: Replacement of tail with PS pole data (in progress) or a more general model, like A y ³ e^{-B y}. Systematic error to be added. Extend to cC80 and cD96. 	 Good signal for Kernel A = 0.4 up to ~1.2fm. Kernel 3 needs more statistics. Plans for both kernels: Increase statistics after ~1fm. Produce data for larger distances. Extend to cC80 and cD96. 	To be included in future runs.
	1	4	

Thank you for your attention!

$\boldsymbol{u}^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

Back-up slides

Lepton-loop cross-check

Lepton-loop cross-check

Fully-connected contribution

- Each diagram: 2 contractions with quark flow in opposite directions.
- the 1st one in our case.
- the first.

• To compute this contribution: Pick a reference diagram that is easier to compute

Then, use a change of variables in the integrals to relate the other diagrams to

Fully-connected contribution

$$f^{(ext{Conn.})}(|y|) = -\sum_{j \in u, d, s, c} \hat{Z}_{V}^{4} Q_{j}^{4} \frac{m_{\mu}e^{6}}{3} 2\pi^{2}|y|^{3} imes c^{2}$$

$$\int_{x} \left(\mathcal{L}'_{[\rho,\sigma]\mu\nu\lambda}(x,y) \int_{z} z_{\rho} \widetilde{\Pi}^{(1),j}_{\mu\nu\sigma\lambda}(x,y,z) + \bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\lambda\nu\mu}(x,x-y) x_{\rho} \int_{z} \widetilde{\Pi}^{(1),j}_{\mu\nu\sigma\lambda}(x,y,z) \right)$$

- S^j(x, y): Propagators from invertine easy job).
- Then, <u>contract</u> with the kernel.

• $S^{j}(x, y)$: Propagators from inverting the Dirac equation on the lattice (not an

2+2 disconnected contribution

- 2+2 Wick contractions written in terms of $\hat{\Pi}_{\mu\nu}(x,y) = \Pi_{\mu\nu}(x,y) - \langle \Pi_{\mu\nu}(x,y) \rangle_U, \\ \Pi_{\mu\nu}(x,y) \equiv -\operatorname{Re} \operatorname{Tr} \{ S(y,x) \gamma_{\mu} S(x,y) \gamma_{\nu} \}.$
- Important: One has to subtract the VEV of $\hat{\Pi}_{\mu\nu}$ to ensure that the two "disconnected" quark loops are still connected by gluons.

2+2 disconnected contribution

$$\begin{split} f^{(2+2)}(|y|) &= -\sum_{i,j\in u,d,s,c} Q_i^2 Q_j^2 \hat{Z}_V^4 \frac{m_\mu e^6}{3} 2\pi^2 |y|^3 \times \\ &\left\langle \int_x \left((\bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\mu\nu\lambda}(x,y) + \bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\nu\mu\lambda}(y,x)) \hat{\Pi}^i_{\mu\lambda}(x,0) \int_z z_\rho \hat{\Pi}^j_{\sigma\nu}(z,y) \right. \\ &\left. + \bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \hat{\Pi}^i_{\mu\nu}(x,y) \int_z z_\rho \hat{\Pi}^j_{\sigma\lambda}(z,0) \right) \right\rangle_U. \end{split}$$

$$\hat{\Pi}_{\mu\nu}(x,y) = \Pi_{\mu\nu}(x,y) - \langle \Pi_{\mu\nu}(x,y) \rangle_U, \Pi_{\mu\nu}(x,y) \equiv -\operatorname{Re}\operatorname{Tr}\{S(y,x)\gamma_{\mu}S(x,y)\gamma_{\nu}\}.$$

- Many sub-contributions: <u>light-light</u> is the dominant one.

on the lattice

Computationally (a lot) more challenging and <u>noisy</u> than the connected.

2+2 Disconnected Framework

• We define the objects \hat{P} in analogy to the objects $\hat{\Pi}$ as following

$$\hat{P}^{i}_{\rho\sigma\nu} \equiv P^{i}_{\rho\sigma\nu} - \left\langle P^{i}_{\rho\sigma\nu} \right\rangle_{U}.$$

• Therefore, we can compute the final ensemble average as

$$\langle \ldots \rangle = \left\langle \hat{P}_{\rho\sigma\nu}^2(w, w+y) \int d\zeta \left(\zeta + y_\rho\right) \hat{P}_{\rho\sigma\nu}^1(w+y, \zeta) \right. \\ \left. + \hat{P}_{\rho\sigma\nu}^3(w+y, w) \int d\zeta \zeta \, \hat{P}_{\rho\sigma\nu}^1(w, \zeta) \right\rangle_U \! .$$

- statistics.
- whole ensemble.

• The quantity above can be averaged over all (w, w') sources, for each y, to increase

 $< \ldots >$ must be computed after finishing the inversions and contractions across the