# Muon g-2: I=1 FV effects on LO HVP

Alessandro Lupo

with BMW + DMZ

hep-lat/2407.10913



#### **BMW - DMZ 2024**





## Contributions to $a_{\mu}^{\text{LO-HVP}}$





Errors





#### Pheno estimate of FV effect



▶ Models based on  $\pi\pi$  states should reproduce FV effects very well



Plot from KNT [hep-ph/1802.02995]



▶ We split the integration over Euclidean time in two:

$$\Delta_L a_{\mu,I=1}^{\rm LO-HVP} = \left(\int_0^{t^*} dt + \int_{t^*}^{\infty} dt\right) K(t) \,\Delta_L C(t)$$

- ▶ We adopt two methods for estimating  $\Delta_L C(t)$ : Hansen-Patella (HP) and Meyer-Lellouch-Lüsher (MLL)
- Series for  $\Delta_L C(t)$  with different convergence properties at different t





▶ FV correlator from a spectral sum

$$C(t, L) = \sum_{n=0}^{n_{\max}} |A_n(L)|^2 e^{-|t|E_n(L)} + \operatorname{res}(n_{\max}, L)$$

 $\triangleright$   $E_n(L)$  from Lüsher [Nucl.Phys.B 354]

$$\phi\left(\frac{k_nL}{2\pi}\right)+\delta_1^1(k_n)=n\in\{1,2\ldots n_{\max}\}.$$

▶  $|A_n(L)|$  from Meyer [PRL 107.072002] Lellouch-Lüsher [Commun.Math.Phys. 219]

$$|A_n|^2 = \frac{2k_n^5}{\pi E_n^2} \frac{|F_{\pi}(k_n)|^2}{\mathbb{L}(k_n)} , \quad \mathbb{L}(k_n) = \frac{kL}{2\pi} \frac{\partial \phi(\frac{kL}{2\pi})}{\partial(\frac{kL}{2\pi})} \bigg|_{k=k_n} + k \frac{\partial \delta_1^1(k)}{\partial k} \bigg|_{k=k_n}$$

We use 
$$L_{\rm ref} = 6.272$$
 fm  $\implies n_{\rm max} = 8$ 



[10.1007/JHEP10(2020)029], [PRL 123.172001]

• Up to terms of order 
$$\exp\left(-m_{\pi}L\sqrt{2+\sqrt{3}}\right)$$
:

$$\Delta_L C(x_0) = -\sum_{\vec{n} \neq 0} \int_{-\infty}^{\infty} \frac{dp_3}{2\pi} \frac{e^{-|\vec{n}| L \sqrt{m_{\pi}^2 + p_3^2}}}{24|\vec{n}| \pi L} \int_{-\infty}^{\infty} \frac{dk_3}{2\pi} \cos(k_3 x_0) \Re \ T(-k_3^2, -p_3 k_3)$$

▶ Faster convergence at small time slices

▶ Dominated by the exchange of single pion: a larger pole part is expressed in terms of  $F_{\pi}(-k^3)$ , a smaller regular part from NLO ChPT.

#### Inputs



- ▶ Inputs required:  $F_{\pi}(s)$  and  $\delta_{11}(s)$
- Common choice: Gounaris Sakurai (timelike) Monopole model (spacelike)
- ▶ We adopt the parametrisation from DHMZ [hep-ph/1908.00921] in both space and timelike regions:

$$\cot \delta(s) = \frac{\sqrt{s}}{2k^3(s)} (m_{\rho}^2 - s) \left(\frac{2m_{\pi}^3}{m_{\rho}^2 s} + B_0 + B_1 w(s)\right)$$

$$F_{\pi}(s) = (1 + \alpha_V s)\Omega(s)$$

 $\triangleright$   $\Omega$  is the Omnès function

$$\Omega(s) = \exp{\frac{s}{\pi}} \int_{4m_\pi^2}^{\infty} ds' \frac{\delta(s')}{s'(s'-s)}$$

▶ New fits to KLOE, BaBar, CMD3



- ▶ For HP, we have three terms and we take the last one,  $|\vec{n}|^2 = 3$ , as an estimate of the systematic error
- > MLL is truncated at n = 8 included: we take the term n = 8 as an estimate of the remainder.

▶ The sign of the remainder is known: we add it with 100% error

$$C(t,L) = \sum_{n=0}^{n_{\max}=8} |A_n(L)|^2 e^{-|t|E_n(L)} + |A_8(L)|^2 e^{-|t|E_8(L)} \pm |A_8(L)|^2 e^{-|t|E_8(L)}$$

The time at which we switch from HP to MLL should not be relevant as long as both expansions are solid. We use  $t_{\star} = (M_{\pi}L/4)^2/M_{\pi}$  suggested in [hep-lat/1306.2532] (1.682 fm)





Truncation errors from MLL and HP are assumed to be fully correlated



- ▶ The regular part of the Compton amplitude used in HP is much smaller than the 1-pion exchange
- ▶ It is however non-negligible for window quantities peaked at shorter distances
- ▶ Estimated in NLO CHPT: we give it 100% uncertainty

$$T_{\rm reg}(k^2, kp) = \frac{7m^2 - 4k^2}{6\pi^2 f_\pi^2} [\sigma \coth^{-1}\sigma] \Big|_{\sigma = \sqrt{1 - 4m^2/k^2}} + P(k^2)$$

#### Systematics III: Parameter error



- Propagate errors from fit parameters accounting for correlations
- Generate parameters from multivariate gaussian distribution

 Without the inclusion of systematic errors, different experimental datasets lead to incompatible results





- Inelastic effects are part of the FV effect but are not straightforward to incorporate into our formalism where we use the elastic phase shift
- ▶ They are non-negligible for energies  $\gtrsim M_{\omega} + M_{\pi}$ : should not propagate significantly into FV effects in  $a_{\mu}$
- From ChPT we expect these effects to be order  $s^3$ .

$$F_{\pi}(s) = \left[1 + \alpha_V s + O(s^3)\right] \,\Omega(s)$$

• We compute the FV effects with and without the known O(s) term, to obtain an upper bound to  $O(s^3)$  effects.

#### Systematics: final result



|                | window  | trunc. (MLL+HP) | HP(regular)                     | inel. | exp.           | iso.              | quad. sum |                   |
|----------------|---------|-----------------|---------------------------------|-------|----------------|-------------------|-----------|-------------------|
|                | 00-28   | 0.11            | 0.06                            | 0.14  | 0.04           | 0.10              | 0.22      |                   |
|                | 00-04   | 0.00            | 0.01                            | 0.00  | 0.00           | 0.00              | 0.01      |                   |
|                | 04-10   | 0.01            | 0.02                            | 0.00  | 0.00           | 0.01              | 0.03      |                   |
|                | 15 - 19 | 0.06            | 0.01                            | 0.03  | 0.01           | 0.02              | 0.07      |                   |
|                | 28 - 35 | 0.00            | 0.00                            | 0.10  | 0.03           | 0.06              | 0.12      |                   |
| $0-2.8{ m fm}$ |         |                 | gular Inelastic<br>O.4 – 1.0 fm | -     | Isospin<br>1.5 | $-1.9\mathrm{fm}$ | :         | $2.8-3.5~{ m fm}$ |
|                |         |                 |                                 |       |                |                   |           |                   |



| window  | $\Delta a_{\mu}^{I=1}(L_{\rm ref} \to \infty)$ |
|---------|------------------------------------------------|
| 00-28   | 9.09(0.22)                                     |
| 00-04   | 0.02(0.01)                                     |
| 04-10   | 0.43(0.03)                                     |
| 15 - 19 | 1.86(0.07)                                     |
| 28 - 35 | 3.66(0.12)                                     |

#### Comparison with GS, 4HEX, ChPT





### CPT

#### Comparison with 4HEX & ChPT





#### Thank you



Appendix



|         | $\Delta a_{\mu}^{I=1}$ | $(L_{\rm ref} \to \infty)$ | $\Delta a_{\mu}^{I=1}(L_{\rm big} \to \infty)$ |      |  |
|---------|------------------------|----------------------------|------------------------------------------------|------|--|
| window  | NLO                    | NNLO                       | NLO                                            | NNLO |  |
| 00-28   | 6.90                   | 8.97                       | 0.39                                           | 0.43 |  |
| 00-04   | 0.01                   | 0.02                       | 0.00                                           | 0.00 |  |
| 04-10   | 0.33                   | 0.40                       | 0.01                                           | 0.01 |  |
| 15 - 19 | 1.48                   | 1.87                       | 0.07                                           | 0.07 |  |
| 28-35   | 2.46                   | 3.45                       | 0.25                                           | 0.29 |  |



| window  | $\Delta a_{\mu}^{\mathrm{I=1}}(L_{\mathrm{ref}} \to L_{\mathrm{big}})$ | $\Delta a_{\mu}^{\mathrm{I}=1}(L_{\mathrm{big}} \to \infty)$ | $\Delta a_{\mu}^{\mathrm{I}=1}(L_{\mathrm{ref}} \to \infty)$ | $\Delta a_{\mu}^{\rm I=0}(L_{\rm ref} \to \infty)$ |
|---------|------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|
|         | from 4hex                                                              | from NNLO                                                    | from 4hex+NNLO                                               | from N4LO est.                                     |
| 00-28   | 8.94(57)(67)                                                           | +0.43-0.06                                                   | 9.31(88)                                                     | 0.00(19)                                           |
| 00-04   | 0.02(00)(00)                                                           | +0.00-0.00                                                   | 0.02(00)                                                     | 0.00(01)                                           |
| 04-10   | 0.48(02)(04)                                                           | +0.01-0.00                                                   | 0.49(04)                                                     | 0.00(00)                                           |
| 15 - 19 | 1.78(12)(13)                                                           | +0.07-0.00                                                   | 1.85(18)                                                     | 0.00(03)                                           |
| 28 - 35 | 3.55(50)(27)                                                           | +0.29-0.11                                                   | 3.73(57)                                                     | 0.00(16)                                           |